How fast is program synthesis from examples

  • Rolf Wiehagen
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 215)


Recursive Function Inductive Inference German Democratic Republic Program Synthesis Sive Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    Angluin, D.: Finding patterns common to a set of strings. Journal Comp. and System Sciences 21 (1980) 1, 46–62.Google Scholar
  2. /2/.
    Angluin, D. and Smith, C. H.: Inductive inference: Theory and methods. Computing Surveys 15 (1983) 3, 238–269.Google Scholar
  3. /3/.
    Barzdin, Ya. M.: Complexity and frequency solution of some algorithmically unsolvable problems. Doctoral Dissertation, Novosibirsk State Univ., 1971 (in Russian).Google Scholar
  4. /4/.
    Barzdin, Ya. M. and Freivald, R. V.: Prediction and limiting synthesis of recursively enumerable classes of functions. Theory of Algorithms and Programs I, Latvian State Univ., Riga, 1974, 117–128 (in Russian).Google Scholar
  5. /5/.
    Beick, H.-R.: Zur Konvergenzgeschwindigkeit von Strategien der induktiven Inferenz. Elektr. Inf.Verarbeitung und Kybernetik 18 (1982) 3, 163–172.Google Scholar
  6. /6/.
    Beick, H.-R.: Induktive Inferenz mit höchster Konvergenzgeschwindigkeit. Dissertation A, Humboldt-Univ., Berlin, 1984.Google Scholar
  7. /7/.
    Blum, M.: A machine-independent theory of the comlexity of recursive functions. Journal Assoc. Comput. Mach. 14 (1967), 322–326.Google Scholar
  8. /8/.
    Blum, L. and Blum, M.: Toward a mathematical theory of inductive inference. Information and Control 28 (1975), 125–155.Google Scholar
  9. /9/.
    Daley, R. P. and Smith, C. H.: On the complexity of inductive inference. Techn. Rep. 83-4, Univ. of Pittsburgh, 1983.Google Scholar
  10. /10/.
    Freivald, R. V.: On the complexity and optimality of computation in the limit. Theory of Algorithms and Programs II, Latvian State Univ., Riga, 1975, 155–173 (in Russian).Google Scholar
  11. /11/.
    Gold, M.: Limiting recursion. Journal of Symb. Logic 30 (1965), 28–48.Google Scholar
  12. /12/.
    Gold, M.: Language identification in the limit. Information and Control 10 (1967), 447–474.Google Scholar
  13. /13/.
    Gold, M.: Complexity of automaton identification from given data. Information and Control 37 (1978), 302–320.Google Scholar
  14. /14/.
    Jantke, K. P. and Beick, H.-R.: Combining postulates of naturalness in inductive inference. Elektron. Inf.Verarbeitung und Kybernetik 17 (1981) 8/9, 465–484.Google Scholar
  15. /15/.
    Klette, R. and Wiehagen, R.: Research in the theory of inductive inference by GDR mathematicians — a survey. Information Sciences 22 (1980), 149–169.Google Scholar
  16. /16/.
    Schäfer-Richter, G.: Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien. Dissertation, RWTH Aachen, 1984.Google Scholar
  17. /17/.
    Shinohara, T.: Polynomial time inference of extended regular pattern languages. Lecture Notes in Comp. Science 147 (1982), 115–127.Google Scholar
  18. /18/.
    Valiant, L. G.: A theory of the learnable. Proc. of the ACM Symp. on Theory of Computing, 1984, 436–445.Google Scholar
  19. /19/.
    Zeugmann, T.: On the synthesis of fastest programs in inductive inference. Elektron. Inf.Verarbeitung und Kybernetik 19 (1983) 12, 625–642.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Rolf Wiehagen
    • 1
  1. 1.Humboldt-University Dept. of Mathematics DDR-1086BerlinGerman Democratic Republic

Personalised recommendations