Interval operators and fixed intervals

  • R. Krawczyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 212)


Interval Operator Fixed Interval Strong Operator Interval Matrix Interval Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adams, E.: On Sets of Solutions of Collections of Nonlinear Systems in \(\mathbb{I}\mathbb{R}^n\). Interval Mathematics 1980, ed. by K. Nickel. Academic Press, New York-London-Toronto, 247–256 (1980).Google Scholar
  2. [2]
    Alefeld, G.: Über die Durchführbarkeit des Gauss'schen Algorithmus bei Gleichungen mit Intervallen als Koeffizienten. Computing Suppl. 1, 15–19 (1977).Google Scholar
  3. [3]
    Alefeld, G.: On the Convergence of some Interval-Arithmetic Modifications of Newton's Method. SIAM J. Num. Anal. 21, 363–372 (1984).CrossRefGoogle Scholar
  4. [4]
    Alefeld, G. and Herzberger, J.: Über das Newton-Verfahren bei nichtlinearen Gleichungssystemen. ZAMM 50, 773–774 (1970).Google Scholar
  5. [5]
    Alefeld, G. and Herzberger, J.: Introduction to Interval Computations. Academic Press, New York, 1983.Google Scholar
  6. [6]
    Alefeld, G. and Platzöder, L.: A Quadratically Convergent Krawczyk-like Algorithm. SIAM J. Num. Anal. 20, 210–219 (1983).CrossRefGoogle Scholar
  7. [7]
    Garloff, J. and Krawczyk, R.: Optimal Inclusion of a Solution Set. Freiburger Intervall-Berichte 84/8, 13–33 (1984).Google Scholar
  8. [8]
    Gay, D. M.: Pertubation Bounds for Nonlinear Equations. SIAM J. Num. Anal. 18, 654–663 (1981).CrossRefGoogle Scholar
  9. [9]
    Gay, D. M.: Computing Pertubation Bounds for Nonlinear Algebraic Equations. SIAM J. Num. Anal. 20, 638–651 (1983).CrossRefGoogle Scholar
  10. [10]
    Hansen, E.: Interval Forms of Newtons Method. Comp. 20, 153–163 (1978).Google Scholar
  11. [11]
    Hansen, E. and Smith, R.: Interval Arithmetic in Matrix Computations, Part II. SIAM J. Num. Anal. 4, 1–9 (1967).CrossRefGoogle Scholar
  12. [12]
    Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Comp. 4, 187–201 (1969).Google Scholar
  13. [13]
    Krawczyk, R.: Intervalliterationsverfahren. Freiburger Intervall-Berichte 83/6 (1983).Google Scholar
  14. [14]
    Krawczyk, R.: Interval Iteration for Including a Set of Solutions. Comp. 32, 13–31 (1984).Google Scholar
  15. [15]
    Krawczyk, R.: Properties of Interval Operators. Freiburger Intervall-Berichte 85/3, 1–20 (1985).Google Scholar
  16. [16]
    Krawczyk, R. and Neumaier, A.: An Improved Interval Newton Operator. Freiburger Intervall-Berichte 84/4, 1–26 (1984).Google Scholar
  17. [17]
    Krawczyk, R. and Neumaier, A.: Interval Newton Operators for Function Strips. Freiburger Intervall-Berichte 85/7, 1–34 (1985).Google Scholar
  18. [18]
    Li, Q. Y.: Order Interval Newton Methods for Nonlinear Systems. Freiburger Intervall-Berichte 83/8 (1983).Google Scholar
  19. [19]
    Moore, R. E.: Interval Analysis. Prentice-Hall, Inc. Englewood Cliffs, N. J. 1966.Google Scholar
  20. [20]
    Moore, R. E.: A Test for Existence of Solutions to Nonlinear Systems. SIAM J. Numer. Anal. 14, 611–615 (1977).CrossRefGoogle Scholar
  21. [21]
    Moore, R. E.: New Results on Nonlinear Systems. Interval Mathematics 1980, ed. by K. Nickel, 165–180 (1980).Google Scholar
  22. [22]
    Neumaier, A.: New Techniques for the Analysis of Linear Interval Equations. Linear Algebra Appl. 58, 273–325 (1984).CrossRefGoogle Scholar
  23. [23]
    Neumaier, A.: An Interval Version of the Secant Method. BIT 24, 366–372 (1984).Google Scholar
  24. [24]
    Neumaier, A.: Interval Iteration for Zeros of Systems of Equations. BIT 25, 256–273 (1985).Google Scholar
  25. [25]
    Neumaier, A.: Existence of Solutions of Piecewise Differentiable Systems of Equations. Freiburger Intervall-Berichte 85/4, 27–34 (1985).Google Scholar
  26. [26]
    Neumaier, A.: Further Results on Linear Interval Equations. Freiburger Intervall-Berichte 85/4, 37–72 (1985).Google Scholar
  27. [27]
    Nickel, K.: On the Newton Method in Interval Analysis. MRC Technical Summary Report # 1136, University of Wisconsin, Madison (1971).Google Scholar
  28. [28]
    Nickel, K.: A Globally Convergent Ball Newton Method. Comp. 24, 97–105 (1980).Google Scholar
  29. [29]
    Qi, L. Q.: A Generalization of the Krawczyk-Moore Algorithm. ‘Interval Mathematics 1980', ed. by K. Nickel. Academic Press, 481–488, (1980).Google Scholar
  30. [30]
    Reichmann, K.: Abbruch beim Intervall — Gauss-Algorithmus. Comp. 22, 355–361 (1979).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • R. Krawczyk

There are no affiliations available

Personalised recommendations