Convergent bounds for the range of multivariate polynomials

  • J. Garloff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 212)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alefeld, G. and J. Herzberger, Introduction to Interval Computations, Academic Press, New York (1983)Google Scholar
  2. [2]
    Bickard, T.A. and E.I. Jury, Real polynomials: a test for non-global non-negativity and non-global positivity, J. Math. Anal. Appl. 78, 17–32 (1980).CrossRefGoogle Scholar
  3. [3]
    Bose, N.K., Applied Multidimensional Systems Theory, van Nostrand Reinhold Comp., New York (1982).Google Scholar
  4. [4]
    Bose, N.K. and J.P. Guiver, Multivariate polynomial positivity invariance under coefficient perturbation, IEEE Trans. Acoust. Speech Signal Process ASSP — 28, 660–665 (1980).Google Scholar
  5. [5]
    Cargo, G.T. and O Shisha, The Bernstein form of a polynomial, J. Res. Nat. Bur. Standards 70B, 79–81 (1966).Google Scholar
  6. [6]
    Grassmann, E. and J. Rokne, The range of values of a circular complex polynomial over a circular complex interval, Computing 23, 139–169 (1979).Google Scholar
  7. [7]
    Hardy, G.H., J.E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, London and New York (1959).Google Scholar
  8. [8]
    Lane, J.M. and R.F. Riesenfeld, Bounds on a polynomial, BIT 21, 112–117 (1981).Google Scholar
  9. [9]
    Lorentz, G.G., Bernstein Polynomials, Univ. Toronto Press, Toronto (1953)Google Scholar
  10. [10]
    Ratschek, H. and J. Rokne, Computer Methods for the Range of Functions, Ellis Horwood Ltd., Chichester (1984).Google Scholar
  11. [11]
    Rheinboldt, W.C., C.K. Mesztenyi, and J.M. Fitzgerald, On the evaluation of multivariate polynomials and their derivatives, BIT 17, 437–450 (1977).Google Scholar
  12. [12]
    Rivlin, T.J., Bounds on a polynomial, J. Res. Nat. Bur. Standards 74B, 47–54 (1970).Google Scholar
  13. [13]
    Rokne, J., Bounds for an interval polynomial, Computing 18, 225–240 (1977).Google Scholar
  14. [14]
    Rokne, J., A note on the Bernstein algorithm for bounds for interval polynomials, Computing 21, 159–170 (1979).Google Scholar
  15. [15]
    Rokne, J., The range of values of a complex polynomial over a complex interval, Computing 22, 153–169 (1979).Google Scholar
  16. [16]
    Rokne, J., Optimal computation of the Bernstein algorithm for the bound of an interval polynomial, Computing 28, 239–246 (1982).Google Scholar
  17. [17]
    Walach, E. and E. Zeheb, Sign test of multivariable real polynomials, IEEE Trans. Circuits and Systems CAS-27, 619–625 (1980).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. Garloff
    • 1
  1. 1.Institut für Angewandte MathematikUniversität Freiburg i.Br.Freiburg i.Br.West Germany

Personalised recommendations