Maximization of multivariable functions using interval analysis

  • Yasuo Fujii
  • Kozo Ichida
  • Masahiro Ozasa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 212)


We described an algorithm for maximizing functions by use of interval analysis. It enables us to obtain the maximum in the domain or on the boundary. Both unconstrained and constrained global maximum can be computed. So far we have calculated maxima of the functions up to five variables. If effective devices for reducing interval width of functions are developed, this method can be applied to higher-dimensional problems.


Global Maximum Interval Analysis Interval Arithmetic Common Boundary Relative Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bremermann, H.: A method of unconstrained global optimization, Math. Biosci. 9,1–15(1970).CrossRefGoogle Scholar
  2. [2]
    Dixon, L.C.W., Szëgo, G.P.:Towords Global Optimisation 2. North-Holland/American Elsevier, Amsterdam, 1978.Google Scholar
  3. [3]
    Hansen, E.R.:Global optimization using interval analysis — The multi-dimensional case, Numer. Math. 34,247–270(1980).Google Scholar
  4. [4]
    Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York, 1983.Google Scholar
  5. [5]
    Nickel, K.L.E.:Interval Mathematics 1980. Academic Press, New York, 1980.Google Scholar
  6. [6]
    Ichida, K., Fujii, Y.:An interval arithmetic method for global optimization, Computing 23,85–97(1979).Google Scholar
  7. [7]
    Moore, R.E.:Interval Analysis. Englewood Cliffs, N.J., Prentice-Hall, 1966.Google Scholar
  8. [8]
    Dixon, L.C.W.: Nonlinear Optimisation. The English Univ. Press, London, 1972.Google Scholar
  9. [9]
    Tsuda, T., Sato, M.: An algorithm to locate the greatest maxima of multi-variable functions, Information Processing(Joho Shori) 16, 2–6(1975).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Yasuo Fujii
    • 1
  • Kozo Ichida
    • 2
  • Masahiro Ozasa
    • 3
  1. 1.Educational Center for Information ProcessingKyoto UniversityJapan
  2. 2.Faculty of Business AdministrationKyoto Sangyo UniversityJapan
  3. 3.Department of Electrical EngineeringRitsumeikan UniversityJapan

Personalised recommendations