Advertisement

Interval test and existence theorem

  • Shen Zuhe 
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 212)

Keywords

Interval Analysis Interval Method Inverse Function Theorem Interval Matrix Numerical Continuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Avila, J.H.: The feasibility of continuation methods for nonlinear equations, SIAM. J. Numer. Anal. 11 (1974).Google Scholar
  2. [2]
    Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken, Computing 4, 187–201 (1969).Google Scholar
  3. [3]
    Krawczyk, R.: Zentrische Formen und Intervalloperatoren, Freiburger Intervall-Berichte 82/1, 1–30 (1982).Google Scholar
  4. [4]
    Krawczyk, R.: Intervallsteigungen für rationale Funktionen und zugeordnete zentrische Formen. Freiburger Intervall-Berichte 83/2, 1–30 (1983).Google Scholar
  5. [5]
    Hansen, E.R.: The centred form. in: Topics in Interval Analysis, (E.R. Hansen, Ed.) Oxford, pp. 102–105.Google Scholar
  6. [6]
    Mihai Cristea: A note on global inversion theorems and applications to differential equations. Nonlinear Analysis, Theory, Methods and Applic., pp. 1155–1161 (1981).Google Scholar
  7. [7]
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ (1966).Google Scholar
  8. [8]
    Moore, R.E.: A test for existence of solution to nonlinear systems, SIAM J. Numer. Anal. 14, 611–615 (1977).CrossRefGoogle Scholar
  9. [9]
    Moore, R.E.: Methods and Applications of Interval Analysis. SIAM Publications, Philadelphia (1974).Google Scholar
  10. [10]
    Moore, R.E., and Qi, L.: A successive interval test for nonlinear systems, SIAM J. Numer. Anal. 19 (1982).Google Scholar
  11. [11]
    Moore, R.E., and Zuhe Shen: An interval version of Chebyshev's method for nonlinear operator equations. Nonlinear Analysis, Theory, Methods and Applic. 7, 21–34 (1983).Google Scholar
  12. [12]
    Neumaier, A.: Interval norms, Freiburger Intervall-Berichte 81/5, 17–33 (1981).Google Scholar
  13. [13]
    Nickel, K.: On the Newton method in interval analysis. MRC Report No. 1136, Mathematics Research Center. University of Wisconsin-Madison, (1971).Google Scholar
  14. [14]
    Ortega, J.M., and Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York-London (1970).Google Scholar
  15. [15]
    Plastock. R.: Homeomorphism between Banach spaces. Trans. Amer. Math. Soc., 200, 169–183 (1974).Google Scholar
  16. [16]
    Pourciau, B.H.: Analysis and optimization of Lipschitz continuous mappings. J. Optim. Theory Appl. 22, 311–351 (1977).CrossRefGoogle Scholar
  17. [17]
    Radulescu, M., and Radulescu, S.: Global inversion theorem and applications to differential equations. Nonlinear Analysis, Theory, Methods and Applic. 4, 951–965 (1980).Google Scholar
  18. [18]
    Ratschek, H.: Zentrische Formen. ZAMM 58, 434–436 (1978).Google Scholar
  19. [19]
    Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen, VEB Deutscher Verlag des Wissenschaften, Berlin, 1978.Google Scholar
  20. [20]
    Zuhe, Shen: On some classical existence theorems. Nonlinear Analysis, Theory, Methods and Applic. 7, 1024–1033 (1983).Google Scholar
  21. [21]
    Zuhe, Shen: Diffeomorphism and the feasibility of the numerical continuation methods. Nonlinear Analysis, Theory, Methods and Applics. 9, 495–502 (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Shen Zuhe 
    • 1
  1. 1.Nanjing UniversityNanjingThe People's Republic of China

Personalised recommendations