Advertisement

Epoxy-aromatic amine networks in the glassy state structure and properties

  • Eduard F. Oleinik
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 80)

Abstract

Properties of networks, prepared by curing of diglycidyl ethers of bisphenols with some aromatic amines, have been considered. Network polymers, obtained from mixtures with different reactant ratios and at different curing temperatures (Tcure), have been chemically characterized (curing conversion, concentration of chemical crosslinks) in detail at all stages of the cure process. Polymer properties, i. e. mechanical features such as rigidity and deformability and thermal features such as Tg, heat capacity, and coefficient of thermal expansion, have been analyzed and interpreted in terms of chemical and physical (packing density) structure. Plastic deformation and some fracture peculiarities of network glasses have been examined. In a few cases, the properties of these polymers in the rubbery state have been considered. A comparison of the structure and properties of network and linear polymeric glasses has been made. It has been shown that, in the formation of the structure and properties of these polymers, an important role is played by vitrification during cure. Polymers prepared at low Tcure usually show higher mechanical properties which, however, are not due to the high density of their glassy state. The peculiarities of the mechanical behaviour and vitrification of polymers isothermally cured at different Tcure have been considered.

Keywords

Glassy State Linear Polymer Network Chain Chemical Crosslinks Diglycidyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations and Symbols

α

reaction conversion

αdif

diffusion conversion limit

αtop

topological conversion limit

AN

aniline

βg

cubic thermal expansion coefficient of the glassy state

βl

cubic thermal expansion coefficient of the liquid state

Δβ(Tg)

thermal expansion coefficient jump at Tg

Cp

heat capacity

ΔCp(Tg)

heat capacity jump at Tg

DGER

diglycidyl ether of resorcinol

DGEBA

diglycidyl ether of Bisphenol-A

DGEOPH

diglycidyl ether of orthophthalic acid

DGEPC

diglycidyl ether of pyrocathechol

DGEHHPH

diglycidyl ether of hexahydrophthalic acid

DADMOPHM

diaminodimethoxyphenylmethane

4,4′-DADPhS

4,4′-diaminodiphenyl sulfone

Epol

electric polarization field

E,E′

Young modulus; dynamic Young modulus

ε

relative deformation

εb

elongation at break

ε*

maximum local elongation

εy

elongation at yield

G

shear modulus

G

equilibrium shear modulus

Kc

rigidity modulus of a network molecular chain

K20

packing density coefficient at 20 °C

L, L

length of plastic deformation zone in the front of crack tip (⊥ and ‖ the tension direction)

m-PhDA

m-phenylenediamine

μ

dipole moment

N

number of dipoles

N(x)

number of crosslinks (m-PhDA molecules) with different

x=0÷4

connectivity (x) of the crosslink with entire network

P

initial molar ratio of reactive groups; P=[NH]0/[EP]0

PhGE

phenylglycidyl ether

PETP

poly(ethylene terephthalate)

P0

saturation polarization

PS

polystyrene

PC

polycarbonate

Q

integral heat of cure reaction

Tg

glass transition temperature of the network at the conversion α=αtop

Tgexp

experimental glass transition temperature

Tcure

cure temperature

Δ(Tg)

temperature interval of the glass transition

σy

yield stress

τy

shear yield stress

τi

average waiting time of a breaking of chemical bond at the stress σi

U0

activation energy

Vsp

specific volume

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. 1.
    Proceedings of the 1975 International Conference on Composite Materials ICCM/I, (eds.) Scala, E., Anderson, E., Tath, I., Noton, B. R., Vol. 1–2. New York, Metall. Soc. AIME 1976Google Scholar
  2. 2.
    Proceedings of the 1978 International Conference on Composite Materials ICCM/2, (eds.) Noton, B., Signorelly, R., Street, K., Phillips, L., Met. Soc. AIME, New York 1978Google Scholar
  3. 3.
    Advances in Composite Materials. Proceedings of the 1980 International Conference Composite Materials ICCM/3, (eds.) Bunsel, A., Norton, B. R., Paris 1980Google Scholar
  4. 4.
    Progress in Science and Engineering of Composites: (eds.) Hayashi, T., Kawata, K., Umekawa, S., Vol. 1, 2, Japan Soc. Comp. Mater. 1982Google Scholar
  5. 5.
    The Role of Polymeric Matrix in the Processing and Structural Properties of Composite Materials, (eds.) Seferis, J. C., Nicolais, L., Plenum Press, New York 1983Google Scholar
  6. 6.
    Rozenberg, B. A., Oleinik, E. F.: Usp. Khimii, 53, 2, 273, (1984)Google Scholar
  7. 7.
    Dušek, K. in: Rubber-Modified Thermoset Resins, (eds.) Keith Riew, C., Gillham, J. K., Advances in Chemistry Series 208, 3, Am. Chem. Soc., Washington D.C. 1984Google Scholar
  8. 8.
    Knunynts, M. I. et al.: Vysokomol. Soedin., A25, 1993 (1983)Google Scholar
  9. 9.
    Topolkaraev, V. A. et al.: Vysokomol. Soedin., A21, 1515 (1979); Mekhanika Kompozit. Mater. (SSSR), 2, 195 (1981)Google Scholar
  10. 10.
    Dušek, K., Ilavsky, M.: J. Polym. Sci., Polym. Phys. Ed., 21, 1323 (1983)Google Scholar
  11. 11.
    Artemenko, S. A. et al.: Dokl. Akad. Nauk SSSR, 245, 1139 (1979)Google Scholar
  12. 12.
    Solodysheva, E. S. et al.: Vysokomol. Soedin., A22, 1645 (1980)Google Scholar
  13. 13.
    Irzhak, V. I., Rosenberg, B. A., Yenikolopyan, N. S.: Network Polymers (in Russian), Nauka, Moscow (1979)Google Scholar
  14. 14.
    Rozenberg, B. A., Oleinik, E. F., Irzhak, V. I.: Zh. Mendeleev Obsh. SSSR, 23, 3, 272 (1978)Google Scholar
  15. 15.
    Oleinik, E. F.: Pure Appl. Chem., 53, p. 1567 (1981)Google Scholar
  16. 16.
    Pakhomova, L. K. et al.: Vysokomol. Soedin., 820, 7, 554 (1979)Google Scholar
  17. 17.
    Zarkhina, T. S. et al.: Vysokomol. Soedin., 26A, 811 (1984)Google Scholar
  18. 18.
    Vladimirov, L. V. et al.: Vysokomol. Soedin. 22A1, p. 225 (1980)Google Scholar
  19. 19.
    Salamatina, O. B. et al.: Vysokomol. Soedin., 25A, 179 (1983)Google Scholar
  20. 20.
    Oleinik, E. F. et al.: Khimich, Phyzika (SSSR), 3, 885 (1984)Google Scholar
  21. 21.
    Vladimirov, L. V.: Ph. D. thesis, Institute Chem. Phys., USSR Acad. Sci., Moscow (1980)Google Scholar
  22. 22.
    Knunynts, M. I. et al.: Mekh. Kompoz. Mater., 1, 156 (1984)Google Scholar
  23. 23.
    Zhorina, L. A. et al.: Vysokomol. Soedin., 23A, 2799 (1981)Google Scholar
  24. 24.
    Zarkhina, T. S. et al.: Vysokomol. Soedin., 24A, 584 (1982)Google Scholar
  25. 25.
    Chepel', L. M. et al.: Vysokomol. Soedin., 25A, 410 (1983); Vysokomol. Soedin., 26A, 362 (1984)Google Scholar
  26. 26.
    Ilavsky, M., Bogdanova, L. M., Dušek, K.: J. Polym. Sci. Polym. Phys. Ed., 22, 265 (1984)Google Scholar
  27. 27.
    Horie, K. et al.: J. Pol. Sci., A-1, 1357 (1970)Google Scholar
  28. 28.
    Babyevsky, P. G., Gillham, J. K.: J. Appl. Polym. Sci., 17, 2067 (1973)Google Scholar
  29. 29.
    Lunak, S., Vladyka, J., Dušek, K.: Polymer, 19, 931 (1978)Google Scholar
  30. 30.
    Morgan, R. J., O'Neal, J. E. in: Chemistry and Properties of Crosslinked Polymers, Labana, S. S. Editor, 289, Academic Press, New York 1977Google Scholar
  31. 31.
    Topolkaraev, V. A. et al.: Dokl. Akad. Nauk (SSSR) 225, 1124 (1975)Google Scholar
  32. 32.
    Salamatina, O. B. et al.: Vysokomol. Soedin., 23A, 2360 (1981)Google Scholar
  33. 33.
    Topolkaraev, V. A. et al.: Vysokomol. Soedin., 22A, 1013 (1980)Google Scholar
  34. 34.
    Topolkaraev, V. A. et al.: Vysokomol. Soedin., 21A, 299 (1979)Google Scholar
  35. 35.
    Morgan, R. J. in: The Role of the Polymeric Matrix in the Processing and Structural Properties of Composite Materials, (eds.) Seferis, J. C., Nicolais, L., p. 207, Plenum Press, New York 1983Google Scholar
  36. 36.
    Matyi, R. J., Uhlmann, D. R.: J. Polym. Sci., 818, 1053 (1980); Faraday Disc. Soc., 68 (1979)Google Scholar
  37. 37.
    Dušek, K., Plestil, J., Lednicky, F., Lunak, S.: Polymer, 19, 393, (1978)Google Scholar
  38. 38.
    Ferry, J. D.: Viscoelastic Properties of Polymers, New York, 1980Google Scholar
  39. 39.
    Kitaigorodskii, A. I.: Molecular Crystals, Nauka, Moscow 1971Google Scholar
  40. 40.
    Bondi, A.: Physical Properties of Molecular Crystals, Liquids and Glasses, Wiley, New York 1968Google Scholar
  41. 41.
    Kovacs, A. J.: Adv. Polym. Sci., 3, 394 (1963)Google Scholar
  42. 42.
    Brady, T. E., Yeh, G. S. Y.: J. Macromol. Sci. Phys., B, 139, 4, p. 659 (1974)Google Scholar
  43. 43.
    Ponomareva, T. I. et al.: Vysokomol. Soedin., 22A, 1958 (1980)Google Scholar
  44. 44.
    Moynihan, C. T. et al.: Journ. Amer. Ceram. Soc., 59, 12 (1976)Google Scholar
  45. 45.
    Bulatov, V. V. et al.: Polym. Bull., 13, 21 (1985)Google Scholar
  46. 46.
    Hirai, N., Eyring, H.: J. Polym. Sci. 37, 51 (1959)Google Scholar
  47. 47.
    Wunderlich, B.: J. Phys. Chem., 64, 1052 (1960)Google Scholar
  48. 48.
    Boyer, R. F.: J. Macrom. Sci. — Phys., B7, 487 (1973)Google Scholar
  49. 49.
    Vladimirov, L. V., Zelenetskii, A. N., Oleinik, E. F.: Vysokomol. Soedin., 19A, 2104 (1977)Google Scholar
  50. 50.
    Heijboer, J. in: Physics of Non-Crystalline Solids, (ed.) Prins, J. A., North-Holland, Amsterdam 1965Google Scholar
  51. 51.
    Rudnev, S. N., Oleinik, E. F.: Vysokomol. Soedin., 22A, 2482 (1980)Google Scholar
  52. 52.
    Chatain, D., Lacabanne, C., Maitrot, M.: Phys. Stat. Stol. (a), 13, 303 (1972)Google Scholar
  53. 53.
    Garroway, A. N., Ritchey, W. M., Moniz, W. B.: Proc. 28th Macromolecular Symposium IUPAC, (eds.) Chien, J. C. W., Lenz, R. W., Vogl, O., p. 1, Univ. Massachus., Amherst 1982Google Scholar
  54. 54.
    Ashok, L. Ch. et al.: Macromolecules, 17, 11, 2399 (1984)Google Scholar
  55. 55.
    Flory, P. J.: J. Macromol. Sci., Phys. B12 (1976)Google Scholar
  56. 56.
    Fischer, E. W. et al.: Faraday Discuss. Chem. Soc., 68 (1979)Google Scholar
  57. 57.
    Boyer, R. F.: Rubber Chem. Techn.: 36, 1303 (1963)Google Scholar
  58. 58.
    Boyer, R. F.: Encyclop. Polym. Sci., Techn., 11, 745 (1977)Google Scholar
  59. 59.
    Robert, G. E., White, E. F. T. in: The Physics of Glassy Polymers, Ed. Haward, R. N., 153, Appl. Sci. Publ., London, 1973Google Scholar
  60. 60.
    Tarasov, V. P. et al.: Vysokomol. Soedin., 24A, 2379 (1982)Google Scholar
  61. 61.
    Flory, P. J.: Statistical Mechanics of Chain Molecules, Interscience, New York 1969Google Scholar
  62. 62.
    Haward, R. N. in: The Physics of Glassy Polymers, (ed.) Haward, R. N., 3, Appl-Sci. Publ., London 1973Google Scholar
  63. 63.
    Vettegren, V. I., Bronnikov, S.-V., Frenkel, S. Ya.: Vysokomol. Soedin., 26A, 939 (1981)Google Scholar
  64. 64.
    Pakhomova, L. K. et al.: Vysokomol. Soedin., 23A, 400 (1981)Google Scholar
  65. 65.
    Chepel', L. M. et al.: Vysokomol. Soedin., 24A, 8, 1646 (1982)Google Scholar
  66. 66.
    Hedvig, P.: Dielectric Spectroscopy of Polymers, Akad. Kiado, Budapest 1977Google Scholar
  67. 67.
    Argon, A. S. in: Glass Science and Technology, (eds.) Uhlman, D. R., Kreidl, N. J., 79, Acad. Press, New York 1980Google Scholar
  68. 68.
    Escaig, B., Lefebvre, J. M.: Rev. Phys. Appliquee, 13, 285 (1978)Google Scholar
  69. 69.
    Bowden, P. B. in: The Physics of Glassy Polymers, (ed.) Haward, R. N., 279, Appl. Sci. Publ., London 1973Google Scholar
  70. 70.
    Artemenko, S. A.: Ph. D. Thesis, Inst. Chem. Phys., USSR Acad. Sci., Moscow (1985)Google Scholar
  71. 71.
    Cavrot, J. P. et al.: Mater. Sci. Eng., 36, 95 (1978)Google Scholar
  72. 72.
    Kocks, U. F., Argon, A. S., Ashby, M. F.: Thermodynamic and Kinetics of Slip, Pergamon Press, New York 1975Google Scholar
  73. 73.
    Argon, A. S., Bessonov, M. I.: Phil. Mag., 35, 4, 917 (1977)Google Scholar
  74. 74.
    Kubat, J., Righdahl, M.: Intern. J. Polym. Mater., 3, 287 (1975)Google Scholar
  75. 75.
    Haussy, Y. et al.: J. Polym. Sci., Phys. Edition, 18, 311 (1980)Google Scholar
  76. 76.
    Yamini, S., Young, R. J.: J. Mat. Sci., 15, 1814 (1980)Google Scholar
  77. 77.
    Oleinik, E. F. et al.: Dokl. Akad. Nauk SSSR, 286, 135 (1986)Google Scholar
  78. 78.
    Friedel, J.: Dislocations, Pergamon Press, London (1964)Google Scholar
  79. 79.
    Kargin, V. A., Slonimskii, G. L.: Encyclopedia of Polymer Science and Technology, 8, 441, New York, J. Wiley 1968Google Scholar
  80. 80.
    Aronhime, M. T., Gillham, J. K.: J. Coat. Techn., 56, 35 (1984)Google Scholar
  81. 81.
    Enns, J. B., Gillham, J. K.: J. Appl. Polym. Sci., 28, 2567 (1983)Google Scholar
  82. 82.
    Gillham, J. K. in: Developments in Polymer Characterization, 3, (ed.) Dawkins, J. V., Chap. 5, London, Appl. Sci. Publ. 1982Google Scholar
  83. 83.
    Blaine, R. L., Lofthouse, M. G.: Du Pont Instruments Technical News, Application Brief TA-65Google Scholar
  84. 84.
    Roe, R.-J., Curro, J. J.: Macromolecules, 16, 428 (1983)Google Scholar
  85. 85.
    Egami, T. in: Molecular and Atomic Glasses, (eds.) O'Reilly, J. M., Goldstein, M., Ann. N.Y. Acad. Sci., 371, 238 (1981)Google Scholar
  86. 86.
    Knunyants, M. I. et al.: Dokl. Akad. Nauk SSSR, 246 (1979)Google Scholar
  87. 87.
    Manevich, L. I. et al.: Mech. Polym. (USSR), 5, 860 (1978)Google Scholar
  88. 88.
    Wrasidlo, W.: J. Polym. Sci. A-2, 9, 1603 (1971)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Eduard F. Oleinik
    • 1
  1. 1.Institute of Chemical PhysicsAcademy of SciencesMoscowUSSR

Personalised recommendations