Chemical reactions in alkali metals

  • Hans Ulrich Borgstedt
Conference paper
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 134)


Liquid alkali metals are of interest for several technical applications due to their physical and nuclear properties. Problems of safe handling and protection against atmospheric gases and water are caused by their chemical reactivity. Several chemical reactions occur even in purified liquid alkali metals.

Alkali oxides are thermodynamically stable up to very high temperatures, and even hydrides have saline character and considerable stability. Lithium nitride is a compound which can be isolated from the solution in the metal in crystalline form. Dissolved oxides have the ability to react with transition metal oxides to form complex oxides, or with hydrogen to form hydroxides of the beavier alkali metals. Lithium cyanamide is formed by means of the reaction between nitrogen and carbon dissolved in the molten metal. The reaction product in liquid sodium is sodium cyanide.

Carbon dispersed in liquid alkali metals is hydrided by the reaction with dissolved hydrogen or hydrides to evolve methane. Some reactions of non-metals dissolved in the motals are important for the compatibility of materials with the alkali metals. Transition metals are almost insoluble in molten alkali metals. Their solubilities can be considerably raised by dissolved non-metals. Several metals of the fourth and fifth group form one or more intermetallic compounds with alkali metals.


Alkali Metal Liquid Metal Molten Metal Heat Pipe Liquid Sodium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. 1.
    Klemm, A.: Angew. Chem. 70, 21 (1958)Google Scholar
  2. 2.
    Cairns, E. J., Shimotake, H.: Science 164, 1347 (1969)Google Scholar
  3. 3.
    Dreyer, S., Haubold, W., Goetzmann, C.: Ullmanns Enzyklopädie der technischen Chemie, Vol. 14, 102 (1977)Google Scholar
  4. 4.
    Weber, N., Kummer, J. T.: Proc. 21st. Annual Power Sources Conf. 21, 42 (1967); Adv. Energy Convers. 1967, 913Google Scholar
  5. 5.
    Brost, O., Groll, M., Schubert, K. P.: Reprints of the 1st. Intern. Heat Pipe Conf., Stuttgart 1973; Verein Deutscher Ingenieure, Düsseldorf 1973Google Scholar
  6. 6.
    Freund, J. H.: Atomkernenergie 11, 221 (1966)Google Scholar
  7. 7.
    Yonco, R. M., Maroni, V. A., Strain, J. E., DeVan, J. H.: J. Nucl. Mat. 79, 354 (1979)CrossRefGoogle Scholar
  8. 8.
    Eichelberger, R. L.: Report AEC-AI 12685 (1968)Google Scholar
  9. 9.
    Noden, J. D.: J. Brit. Nucl. Energy Soc. 12, 57 and 329, (1973)Google Scholar
  10. 10.
    Minushkin, D., Kissel, G., in: Corrosion by Liquid Metals, Plenum Press, New York 1970, 515Google Scholar
  11. 11.
    Smith, D. L., Kassner, T. F., in: Corrosion by Liquid Metals, Plenum Press, New York 1970, 137Google Scholar
  12. 12.
    Williams, D. D., Grand, J. A., Miller, R. R.: J. Phys. Chem. 63, 68 (1959)CrossRefGoogle Scholar
  13. 13.
    Ganesan, V., Borgstedt, H. U., Adelhelm, Ch.: J. Less-Common Metals 113, (1985)Google Scholar
  14. 14.
    Touzain, Ph.: Canad. J. of Chem. 47, 2639 (1969)Google Scholar
  15. 15.
    Knights, C. F., Phillips, B. A.: J. Nucl. Mat. 84, 196 (1979)CrossRefGoogle Scholar
  16. 16.
    Rohde, J. F. M., Hissink, M., Bos, L.: ibid. 24, 503 (1970)Google Scholar
  17. 17.
    Borgstedt, H. U., Frees, G., Drechsler, G.: Werkst. & Korros. 21, 568 (1970)Google Scholar
  18. 18.
    Borgstedt, H. U., Schneider, W.: J. Nucl. Mat. 37, 114 (1970)CrossRefGoogle Scholar
  19. 19.
    Borgstedt, H. U.: Werkst. & Korros. 28, 529 (1977)Google Scholar
  20. 20.
    Chiotti, P., Wu, P. C. S., Fisher, R. W.: J. Nucl. Mat. 38, 260 (1971)CrossRefGoogle Scholar
  21. 21.
    Gross, P., Wilson, G. L., Gutteridge, W. A.: J. Chem. Soc. (A) 1970, 1908Google Scholar
  22. 22.
    Bhat, N. P., Borgstedt, H. U.: Nucl. Technol. 52, 153 (1981)Google Scholar
  23. 23.
    Cavell, I. W., Nicholas, M. G.: J. Nucl. Mat. 95, 129 (1980)CrossRefGoogle Scholar
  24. 24.
    Awasthi, S. P., Borgstedt, H. U.: ibid. 116, 103 (1983)CrossRefGoogle Scholar
  25. 25.
    Barker, M. G., Wood, D. J.: J. Less-Common Metals 35, 315 (1974)CrossRefGoogle Scholar
  26. 26.
    Gross, P., Wilson, G. L.: J. Chem. Soc. (A) 1970, 1913Google Scholar
  27. 27.
    Addison, C. C., Barker, M. G., Lintonbon, R. M., Pulham, R. J.: ibid. 1969, 2457Google Scholar
  28. 28.
    Adamson, M. G., Mignanelli, M. A., Potter, P. E., Rand, M. H.: J. Nucl. Mat. 97, 203 (1981)CrossRefGoogle Scholar
  29. 29.
    Cordfunke, E. H. P., Westrum jr., E. F., in: Thermodynamics of Nuclear Materials 1979, Vol. 2, IAEA-SM-236 (1980) 125Google Scholar
  30. 30.
    Gadd, P. G., Borgstedt, H. U., in: Liquid Metal Engineering and Technology, Vol. 2, Brit. Nucl. Energy Soc., London 1984, 107Google Scholar
  31. 31.
    Migge, H., in: Proc. 2nd. Intern. Conf. on Liquid Metal Technology in Energy Production (CONF-800401-P2), Richland, Wash., USA, April 20–24, 1980, vol. 2, 18–9Google Scholar
  32. 32.
    Jansson, S. A., in: Corrosion by Liquid Metals, Plenum Press, New York 1970, 523Google Scholar
  33. 33.
    Myles, K. M., Cafasso, F. A.: J. Nucl. Mat. 67, 249 (1977)CrossRefGoogle Scholar
  34. 34.
    Ganesan, V., Borgstedt, H. U.: to be publishedGoogle Scholar
  35. 35.
    Carmichael, H. T., Meacham, S. A.: The Solubility of Sodium Carbonate in Sodium, Report USAEC-APDA-184 (1968)Google Scholar
  36. 36.
    Migge, H., in: Material Behavior and Physical Chemistry in Liquid Metal Systems, Plenum Press, New York 1982, 351Google Scholar
  37. 37.
    Borgstedt, H. U.: Metall 34, 143 (1980)Google Scholar
  38. 38.
    Fedorov, P. I., Su, M. T.: Acta Chim. Sinica (Hua Hsuah Hsueh Pa O) 23, 30 (1957)Google Scholar
  39. 39.
    Secrist, D. R., Wisnyi, L. G.: Acta Cryst. 15, 1042 (1962)CrossRefGoogle Scholar
  40. 40.
    Föppl, H.: Angew. Chem. 70, 401 (1958)Google Scholar
  41. 41.
    Pulham, R. J., Hubberstey, P., Thunder, A. E., Harper, A., Dadd, A. T., in: Proc. 2nd. Intern. Conf. on Liquid Metal Technology in Energy Production (CONF-800401-P2) Richland, Wash., USA, April 20–24, 1980, Vol. 2, 18-1Google Scholar
  42. 42.
    Rüdorff, W., Schulze, E.: Z. Anorg. Allgem. Chem. 277, 156 (1954)CrossRefGoogle Scholar
  43. 43.
    Asher, R. C., Wilson, S. A.: Nature (London) 181, 409 (1958)Google Scholar
  44. 44.
    Olson, W. H., Ruther, W. E.: Nucl. Techn. 46, 318 (1979)Google Scholar
  45. 45.
    Yonco, R. M., Homa, M. I.: Trans. Amer. Nucl. Soc. 32, 270 (1979)Google Scholar
  46. 46.
    Ainsley, R., Hartlib, A. P., Holroyd, P. M., Long, G.: J. Nucl. Mat. 52, 255 (1974)CrossRefGoogle Scholar
  47. 47.
    Longson, B., Thorley, A. W.: J.Appl. Chem. 20, 372 (1970)Google Scholar
  48. 48.
    Asher, R. C., Kirstein, T. B. A., in: Liquid Metals 1976, Conf. Series no. 30, The Inst. of Physics, Bristol and London 1977, 561Google Scholar
  49. 49.
    Salzano, F. J., Newman, L., Hobdell, M. R.: Nucl. Techn. 10, 335 (1971)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Hans Ulrich Borgstedt
    • 1
  1. 1.Kernforschungszentrum Karlsruhe, Institut für Material- und Festkörperforschung IIKarlsruheFRG

Personalised recommendations