Area-time optimal division for T=Ω((logn)1+ε)

  • K. Mehlhorn
  • F. P. Preparata
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 210)


Algorithm INVERSE2 Newton Approximation Depth Circuit Redundant Number Coordinate Science Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Mehlhorn: “AT2-optimal VLSI Integer Division and Integer Square Rooting", Integration, 2, 163–167, 1984.Google Scholar
  2. [2]
    J. Reif: “Logarithmic Depth Circuits for Algebraic Functions", 24th FOCS, 138–145, 1983.Google Scholar
  3. [3]
    P.W. Beame, S.A. Cook, H.J. Hoover: “Log Depth Circuits for Division and Related Problems", 24th FOCS, 1–6, 1984.Google Scholar
  4. [4]
    W.K. Luk, J. Vuillemin: “Recursive Implementation of Optimal Time VLSI Integer Multipliers", VLSI 83, Trondheim, Norway, 1983.Google Scholar
  5. [5]
    O. Spaniol: “Arithmetik in Rechenanlagen", Teubner Verlag, Stuttgart, 1976.Google Scholar
  6. [6]
    K. Mehlhorn, F.P. Preparata: “AT2-optimal VLSI Integer Multiplier with Minimum Computation Time", Information and Control, 58, 1–3, 137–156, 1983.Google Scholar
  7. [7]
    D.E. Knuth: “The Art of Computer Programming”, Vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, Mass. 1981, 2d ed.Google Scholar
  8. [8]
    F.T. Leighton, personal communication, May 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • K. Mehlhorn
    • 1
  • F. P. Preparata
    • 2
  1. 1.Fachbereich 10, Informatik, Universität des SaarlandesSaarbrückenWest Germany
  2. 2.Coordinated Science LaboratoryUniversity of IllinoisUrbana

Personalised recommendations