Advertisement

On generalized kolmogorov complexity

  • José L. Balcázar
  • Ronald V. Book
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 210)

Keywords

Kolmogorov Complexity Finite Extension Restricted Type Universal Turing Machine Finite String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Balcázar, R. Book, and U. Schöning, On bounded query machines, Theoret. Comput. Sci., to appear.Google Scholar
  2. 2.
    J. Balcázar, R. Book, and U. Schöning, Sparse sets, lowness, and highness, SIAM J. Computing, to appear. Also see Mathematical Foundations of Computer Science — 1984, Lecture Notes in Computer Science 176 (1984), 185–193.Google Scholar
  3. 3.
    R. Book, T. Long, and A. Selman, Quantitative relativizations of complexity classes, SIAM J. Computing 13 (1984), 461–487.CrossRefGoogle Scholar
  4. 4.
    G. Chaitin, On the length of programs for computing finite binary sequences, J. Assoc. Comput. Mach. 13 (1966), 547–569.Google Scholar
  5. 5.
    G. Chaitin, Information-theoretic limitations of formal systems, J. Assoc. Comput. Mach. 21 (1974), 403–424.Google Scholar
  6. 6.
    G. Chaitin, A theory of program size formally identical to information theory, J. Assoc. Comput. Mach. 22 (1975), 329–340.Google Scholar
  7. 7.
    J. Hartmanis, Generalized Kolmogorov complexity and the structure of feasible computations, Proc. 24th IEEE Symp. Foundations of Computer Science, 1983, 439–445.Google Scholar
  8. 8.
    K. Ko, Resource-bounded program-size complexity and pseudo-random sequences, Technical Report, University of Houston.Google Scholar
  9. 9.
    K. Ko, Continuous optimization problems and a polynomial hierarchy of real functions, J. Complexity, to appear.Google Scholar
  10. 10.
    K. Ko and U. Schöning, On circuit-size complexity and the low hierarchy in NP, SIAM J. Computing 14 (1985), 41–51.Google Scholar
  11. 11.
    A. Kolmogorov, Three approaches for defining the concept of information quality, Prob. Info. Trans. 1 (1965), 1–7.Google Scholar
  12. 12.
    R. Ladner, The circuit value problem is log space complete for P, SIGACT News 7 (1975), 18–20.CrossRefGoogle Scholar
  13. 13.
    T. Long, On restricting the size of oracles compared with restricting access to oracles, SIAM J. Computing 14 (1985), 585–597.Google Scholar
  14. 14.
    T. Long and A. Selman, Relativizing complexity classes with sparse oracles, J. Assoc. Comput. Mach., to appear.Google Scholar
  15. 15.
    W. Paul, J. Seiferas, and J. Simon, An information-theoretic approach to time bounds for on-line computation, Proc. 12th ACM Symp. Theory of Computing, 1980, 357–367.Google Scholar
  16. 16.
    U. Schöning, a low-and a high-hierarchy in NP, J. Comput. Syst. Sci. 27 (1983), 14–28.Google Scholar
  17. 17.
    U. Schöning, Habilitationsschrift, Institut für Informatik, Universität Stuttgart, 1985.Google Scholar
  18. 18.
    A. Selman, Xu Mei-rui, and R. Book, Positive relativizations of complexity classes, SIAM J. Computing 12 (1983), 565–579.Google Scholar
  19. 19.
    M. Sipser, A complexity theoretic approach to randomness, Proc. 15th ACM Symp. Theory of Computing, 1983, 330–335.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • José L. Balcázar
    • 1
  • Ronald V. Book
    • 2
    • 3
  1. 1.Facultat d'InformàticaUniversitat Politècnica de BarcelonaBarcelonaSpain
  2. 2.Department of MathematicsUniversity of CaliforniaSanta BarbaraU.S.A.
  3. 3.Mathematical Sciences Research Inst.BerkeleyU.S.A.

Personalised recommendations