Schwinger model (QED)2

Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 244)


Minkowski Space Massless Fermion Chiral Anomaly Lorentz Gauge Fermionic Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Additional references

  1. J. Schwinger, Phys. Rev. 128, 2425 (1962); Phys. Rev. 125, 397 (1962)Google Scholar
  2. R. Roskies, F. Schaposnik, Phys. Rev. D23, 558 (1981)Google Scholar
  3. R.E. Gamboa Saravi, F. Schaposnik, J.E. Solomin, Nucl. Phys. B185, 239 (1981)Google Scholar
  4. K. Furuya, R.E. Gamboa-Saravi, F. Schaposnik, Nucl. Phys. B208, 159 (1982)Google Scholar
  5. R. Banerjee, Z. Phys. C25, 251 (1984)Google Scholar
  6. R.E. Gamboa Saravi et al., Phys. Lett. 138B, 145 (1984)Google Scholar
  7. R.E. Gamboa Saravi et al., Ann. Phys. 157, 360 (1984)Google Scholar
  8. C. Nash, S. Sen, “Topology and Geometry for Physicists”, Academic Press, London (1983)Google Scholar

Chiral anomalies

  1. S. Adler, Phys. Rev. 177, 2426 (1969); J. Bell, R. Jackiw, Nuovo Cim. 60A, 47 (1969)Google Scholar
  2. R. Jackiw in: Lectures on current algebra and its applications; ed. D. Gross, R. Jackiw, S. Treiman, Princeton University Press (1972)Google Scholar
  3. S. Adler in: Lectures on elementary particles and quantum field theory, Vol 1, 1970 Brandeis University Summer Institute, MIT PressGoogle Scholar
  4. K. Huang, “Quarks, Leptons and Gauge Fields”, World Scientific, Singapore (1982)Google Scholar
  5. K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979); Phys. Rev. D21, 2848 (1980)Google Scholar
  6. M. Reuter, Phys. Rev. D31, 1374 (1985)Google Scholar

Copyright information

© Springer-Verlag 1986

Personalised recommendations