Relativistic Brueckner-Hartree-Fock approach for nuclear matter

  • R. Brockmann
  • R. Machleidt
Part III Relativistic and Mean Field Approaches to Hadron-Nucleus Interactions
Part of the Lecture Notes in Physics book series (LNP, volume 243)


Starting from the full Bonn meson-exchange model for the NN-interaction an OBEP is constructed in the framework of the Thompson version of the Blankenbecler-Sugar reduction of the Bethe-Salpeter equation. The pseudo-vector coupling of the pion to the nucleon is assumed. An excellent quantitative description of the deuteron and the latest phase-shift analyses of NN-scattering is achieved. This potential is applied to the system of infinite nuclear matter in the relativistic Dirac-Brueckner approach. Due to additional strongly density-dependent relativistic saturation effects, which do not occur in conventional Brueckner theory, the empirical saturation energy and density of nuclear matter are reproduced. This potential may serve as a good starting point for the evaluation of the optical potential to be applied in nucleon-nucleus scattering.


Nuclear Matter Single Particle Energy Dirac Spinor Continuous Choice Nucleon Propagator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. B.D. Serot, contribution to this workshop, or: B.D. Serot and J.D. Walecka, Advances in Nuclear Physics (J.W. Negele and E. Vogt, eds.), Vo1.16, Plenum Press, New York (1984), to be published.Google Scholar
  2. 2.
    See for a review and historical references: B.D. Day, Rev.Mod.Phys. 39, 719 (1967) and 50, 495 (1978).CrossRefGoogle Scholar
  3. 3.
    K.A. Brueckner and J.L. Gammel, Phys.Rev. 109, 1023 (1958).CrossRefGoogle Scholar
  4. 4.
    J.L. Gammel and R.M. Thaler, Phys.Rev. 107, 291, 1339 (1957).CrossRefGoogle Scholar
  5. 5.
    J.G. Zabolitzky, Nucl.Phys. A228, 285 (1974).Google Scholar
  6. 6.
    B.D. Day, Phys.Rev.Lett. 47, 226 (1981).CrossRefGoogle Scholar
  7. 7.
    K. Erkelenz, Phys.Reports 13C, 191 (1974).CrossRefGoogle Scholar
  8. 8.
    K. Holinde and R. Machleidt, Nucl.Phys. A247, 495 (1975).Google Scholar
  9. 9.
    D. Schütte, Nucl.Phys. A221, 450 (1974)Google Scholar
  10. 8.a
    K. Kotthoff, K. Holinde, R. Machleidt and D. Schütte, Nucl.Phys. A242, 429 (1975)Google Scholar
  11. 8.b
    K. Kotthoff, R. Machleidt and D. Schütte, Nucl.Phys. A264, 484 (1976).Google Scholar
  12. 10.
    T.S.H. Lee and F. Tabakin, Nucl.Phys. A191, 332 (1972).Google Scholar
  13. 11.
    M.R. Anastasio et al., Phys.Reports 100, 327 (1983).CrossRefGoogle Scholar
  14. 12.
    C.J. Horowitz and B.D. Serot, Phys.Lett. 137B, 287 (1984).Google Scholar
  15. 13.
    R. Machleidt, in: Quarks and Nuclear Structure (K. Bleuler, ed.), Lecture Notes in Physics (Springer Verlag, Heidelberg, 1984), Vol. 197, p.352Google Scholar
  16. 13a.
    R. Machleidt, K. Holinde and C. Elster, to be published.Google Scholar
  17. 14.
    E.E. Salpeter and H.A. Bethe, Phys.Rev. 84, 1232 (1951).CrossRefGoogle Scholar
  18. 15.
    J. Fleischer and J.A. Tjon, Phys.Rev. D21, 87 (1980)Google Scholar
  19. 15a.
    M.J. Zuilhof and J.A. Tjon, Phys.Rev. C24, 736 (1981).Google Scholar
  20. 16.
    R.M. Woloshyn and A.D. Jackson, Nucl.Phys. B64, 269 (1973).CrossRefGoogle Scholar
  21. 17.
    G.E. Brown and A.D. Jackson, The Nucleon-Nucleon-Interaction, (North-Holland Publ.Comp.Amsterdam, 1976).Google Scholar
  22. 18.
    R.H. Thompson, Phys.Rev. D1, 1738 (1970).Google Scholar
  23. 19.
    R. Blankenbecler and R. Sugar, Phys.Rev. 142, 1051 (1966).CrossRefGoogle Scholar
  24. 20.
    R. Machleidt and K. Holinde, Phys.Lett., to be published.Google Scholar
  25. 21.
    R. Dubois et al., Nucl.Phys. A377, 554 (1982).Google Scholar
  26. 22.
    R.A. Arndt et al., Phys.Rev. D28, 97 (1983).Google Scholar
  27. 23.
    R.V. Reid, Ann.Phys. (N.Y.) 50, 411 (1968).CrossRefGoogle Scholar
  28. 24.
    M. Lacombe, Phys.Rev. C21, 861 (1980).Google Scholar
  29. 25.
    T. Hamada and I.D. Johnston, Nucl.Phys. 34, 382 (1962).CrossRefGoogle Scholar
  30. 26.
    H.A. Bethe and M.B. Johnson, Nucl.Phys. A230, 1 (1974).Google Scholar
  31. 27.
    K. Holinde, Phys.Reports 68, 121 (1981), Table 1, column 1 and 2.CrossRefGoogle Scholar
  32. 28.
    R.A. Bryan and A. Gersten, Phys.Rev. D6, 341 (1972).Google Scholar
  33. 29.
    R. de Tourreil and D.W.L. Sprung, Nucl.Phys. A201, 193 (1973).Google Scholar
  34. 30.
    K. Holinde and R. Machleidt, Nucl.Phys. A256, 479 (1976).Google Scholar
  35. 31.
    R. Machleidt and K. Holinde, Nucl.Phys. A350, 396 (1980); δ1 is the result obtained in that work with the continuous choice for the single particle potential; for δ2 the mesonic effects were ignored.Google Scholar
  36. 32.
    K. Holinde and R. Machleidt, Nucl.Phys. A280, 429 (1977); note that for the result quoted in Fig.5a a continuous choice is used.Google Scholar
  37. 33.
    M.R. Anastasio et al., Phys.Rev. C18, 2416 (1978); the result quoted in Fig.5a refers to model MDFPδI applied with a continuous choice and without mesonic effects.Google Scholar
  38. 34.
    J.P. Jeukenne, A. Lejeune and C. Mahaux, Phys.Rev. 25C, 83 (1976)Google Scholar
  39. 34a.
    B.D. Day, Phys.Rev. C24, 1203 (1981); see also Ref.6.Google Scholar
  40. 35.
    F. Coester, S. Cohen, B.D. Day and C.M. Vincent, Phys.Rev. C1, 769 (1970).Google Scholar
  41. 36.
    R. Brockmann and R. Machleidt, Phys.Lett. 149B, 283 (1984).Google Scholar
  42. 37.
    J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields (McGrawHill, New York, 1965).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. Brockmann
    • 1
  • R. Machleidt
    • 2
    • 3
  1. 1.Institut für Theoretische Physik II der Universität Erlangen-NürnbergErlangenWest-Germany
  2. 2.TRIUMFVancouver, B.C.Canada
  3. 3.Institut für Theoretische Kernphysik der Universität Bonn5300West-Germany

Personalised recommendations