Advertisement

Microscopic relativistic description of nucleon-nucleus scattering

  • C. J. Horowitz
  • D. Murdock
Part III Relativistic and Mean Field Approaches to Hadron-Nucleus Interactions
Part of the Lecture Notes in Physics book series (LNP, volume 243)

Abstract

Microscopic relativistic optical potentials have been calculated for closed shell nuclei at energies near 200 MeV. These calculations go beyond the simple RIA by resolving ambiguities in the relativistic NN amplitudes and including Pauli blocking corrections.

The calculations quantitatively reproduce all measured elastic spin observables (both Ay and Q) for closed shell nuclei at energies near 200 MeV. It remains to be seen how unique this good description is. Further nonrelativistic work to compare with this relativistic approach would be very useful.

Keywords

Local Density Approximation Optical Potential Ladder Diagram Spin Observable Shell Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Horowitz and Brian D. Serot, Nucl. Phys., A368:503 (1981).Google Scholar
  2. 2.
    L.G. Arnold, et al., Phys. Rev., C23:1949 (1981); B.C. Clark, et al., Proceedings of “The Interaction Between Medium Energy Nucleons in Nuclei”, H.O. Meyer, ed., AIP #97, Bloomington, IA (1982).Google Scholar
  3. 3.
    J.A. McNeil, J. Shepard and S.J. Wallace, Phys. Rev. Lett., 50:1439 (1983); J. Shepard, J.A. McNeil and S.J. Wallace, Phys. Rev. Lett., 50:1443 (1983).CrossRefGoogle Scholar
  4. 4.
    C.J. Horowitz, Phys. Rev., C31:1340 (1985).Google Scholar
  5. 5.
    J.A. Tjon and S.J. Wallace, University of Maryland preprint 85-052 (1985), submitted to Phys. Rev. Lett. Google Scholar
  6. 6.
    L. Rikus and H.V. von Germab, Nucl. Phys., A426:469 (1984).Google Scholar
  7. 7.
    J.A. McNeil, L. Ray and S.J. Wallace, Phys. Rev., C27:2123 (1983).Google Scholar
  8. 8.
    K. Holinde, K. Ekelenz and R. Alzetta, Nucl. Phys., A194:161 (1972).Google Scholar
  9. 9.
    E. Stevenson, Proceedings of “Dirac Approaches to Nuclear Physics”, Los Alamos (1985), and private communication.Google Scholar
  10. 10.
    B.C. Clark, private communication (1985).Google Scholar
  11. 11.
    F.A. Brieva and J.R. Rook, Nucl. Phys., A291:317 (1977).Google Scholar
  12. 12.
    P. Schwandt, H.O. Meyer, W.W. Jacobs, A.D. Bacher, S.E. Vigdo, M.D. Kaitchuck and T.R. Donoghue, Phys. Rev., C26:55 (1982).Google Scholar
  13. 13.
    D.A. Hutcheon, J.M. Cameron, R.P. Liljestrand, P. Kitching, C.A. Miller, M.J. McDonald, D.M. Shephard, W.C. Olsen, G.C. Neilson, H.S. Sherif, R.N. MacDonald, G.M. Stinson, D.K. McDaniels, J.R. Tinsley, L.W. Swenson, P. Schwandt, C.E. Stronach and L. Ray in: “Polarization Phenomena in Nuclear Physics, G.G. Ohlsen, ed., (1980) (AIP, 1981).Google Scholar
  14. 14.
    C.W. Glover, P. Schwandt, H.O. Meye, W.W. Jacobs, J.R. Hall, M.D. Kaitchuck and R.P. DeVito, Phys. Rev., C31:1 (1985).Google Scholar
  15. 15.
    15.C.J. Horowitz and B.D. Serot, Phys. Letts., 137B:287 (1984), and to be published.Google Scholar
  16. 16.
    L. Ray and G.W. Hoffman, Phys. Rev. C31:538 (1985).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • C. J. Horowitz
    • 1
  • D. Murdock
    • 1
  1. 1.Center for Theoretical Physics and Department of PhysicsMassachusetts Institute of TechnologyCambridgeMassachusetts

Personalised recommendations