Advertisement

Nonrelativistic and relativistic treatments of nucleon-nucleus scattering

Part II Nucleon-Nucleus and Antinucleon-Nucleus Interactions
Part of the Lecture Notes in Physics book series (LNP, volume 243)

Abstract

Both nonrelativistic and relativistic models for describing nucleon-nucleus scattering from low to intermediate energies are considered. In particular the effect of virtual ▵(1232 MeV) and N*(1440 MeV) nucleon resonances onthe Pauli blocking modification of the low energy nonrelativistic nucleon-nucleon effective interaction is calculated for several partial wave channels. The effects of Pauli blocking at energies above the pion production threshold are also examined. Applications of the relativistic impulse approximation (RIA) — Dirac equation approach to recent 800 MeV proton-nucleus spin rotation data are given. Preliminary estimates of second order multiple scattering contributions arising from two-nucleon correlations in the target nucleus are studied within the context of the RIA model.

Keywords

Pauli Blocking Elastic Differential Cross Section Pion Production Threshold Differential Cross Section Data Analyze Power Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Brueckner and C. A. Levinson, Phys. Rev. 97 (1955) 1344.CrossRefGoogle Scholar
  2. 2.
    K. M. Watson, Phys. Rev.89 (1953) 575.CrossRefGoogle Scholar
  3. 3.
    A. K. Kerman, H. McManus and R. M. Thaler, Ann. Phys. (N. Y.) 8 (1959) 551.CrossRefGoogle Scholar
  4. 4.
    H.V. von Geramb, in The Interaction Between Medium Energy Nucleons in Nuclei — 1982, American Institute of Physics Conf. Proc. No. 97, edited by H. O. Meyer (American Institute of Physics Press, New York, 1983), p.44; and L. Rikus and H. V. von Geramb, Nucl. Phys. A426 (1984) 496, and H. V. von Geramb, private communication.Google Scholar
  5. 5.
    J. A. McNeil, J. Shepard, and S. J. Wallace, Phys. Rev. Lett. 50 (1983) 1439,1443.CrossRefGoogle Scholar
  6. 6.
    B. C. Clark, S. Hama, R. L. Mercer, L. Ray and B. D. Serot, Phys. Rev. Lett. 50 (1983) 1644.CrossRefGoogle Scholar
  7. 7.
    B. C. Clark, S. Hama, R. L. Mercer, L. Ray, G. W. Hoffmann, and B. D. Serot, Phys. Rev. C28 (1983) 1421.Google Scholar
  8. 8.
    L. Ray and G. W. Hoffmann, Phys. Rev.C31 (1985) 538.Google Scholar
  9. 9.
    J.-P. Jeukenne, A. Lejeune and C. Mahaux, Phys. Rev. C10 (1974) 1391.Google Scholar
  10. 10.
    F. A. Brieva and J. R. Rook, Nucl. Phys. A291 (1977) 299,317.Google Scholar
  11. 11.
    E. L. Lomon, Phys. Rev. D26 (1982) 576.Google Scholar
  12. 12.
    T.-S. H. Lee, Phys. Rev. C29 (1984) 195.Google Scholar
  13. 13.
    J. H. Gruben and B. J. VerWest, Phys. Rev. C28 (1983) 836.Google Scholar
  14. 14.
    A. M. Green, J. A. Niskanen and M. E. Sainio, J. Phys. G: Nucl. Phys. 4 (1978) 1055.CrossRefGoogle Scholar
  15. 15.
    E. L. Lomon and H. Feshbach, Ann. Phys. (N. Y.) 48 (1968) 94.CrossRefGoogle Scholar
  16. 16.
    Y. Suzuki and K. T. Hecht, Phys. Rev. C27 (1983) 299.Google Scholar
  17. 17.
    R. A. Arndt et al., Phys. Rev. D28 (1983) 97 and R. A. Arndt, private communication. Both the SP82 and WI84 phase shift solutions were obtained from the V.P.I. scattering analysis interactive dial-in computer program (SAID).Google Scholar
  18. 18.
    R. V. Reid, Ann. Phys. (N. Y.) 50 (1968) 411.CrossRefGoogle Scholar
  19. 19.
    G. W. Hoffmann et al., Phys. Rev. Lett. 47 (1981) 1436.CrossRefGoogle Scholar
  20. 20.
    M. L. Barlett, W. Coker, G. W. Hoffmann, and L. Ray, Phys. Rev.C29 (1984) 1407.Google Scholar
  21. 21.
    R. Dymarz, Phys. Lett. 152B (1985) 319.Google Scholar
  22. 22.
    M. V. Hynes, A. Picklesimer, P. C. Tandy and R. M. Thaler, Phys. Rev. C31 (1985) 1438, and ibid. Phys. Rev. Lett. 52 (1984) 978.Google Scholar
  23. 23.
    R. W. Fergerson et al., submitted to Phys. Rev. C (1985).Google Scholar
  24. 24.
    I. Sick and J. S. McCarthy, Nucl. Phys. A150 (1970) 631; I. Sick et al., Phys. Lett. 88B (1979) 245; and B. Frois et al., Phys. Rev. Lett. 38 (1977) 152.Google Scholar
  25. 25.
    L. Ray, Phys. Rev. C19 (1979) 1855.Google Scholar
  26. 26.
    W. Bertozzi, J. Friar, J. Heisenberg, and J. W. Negele, Phys. Lett. 418 (1972) 408.Google Scholar
  27. 27.
    J. Dechargé and D. Gogny, Phys. Rev. C21 (1980) 1568; J. Dechargé, M. Girod, D. Gogny, and B. Grammaticos, Nucl. Phys. A358 (1981) 203c; J. Dechargé, private communication.Google Scholar
  28. 28.
    C. J. Horowitz and B. D. Serot, Nucl. Phys. A369 (1981) 503.Google Scholar
  29. 29.
    The 500 MeV Los Alamos Meson Physics Facility-high resolution spectrometer (LAMPF-HRS) data are published in Ref. 19. The 800 MeV 40Ca HRS analyzing power data are presented in G. Igo et al., Phys. Lett. 81B (1979) 151. The 800 MeV 208Pb HRS cross section data appear in G. W. Hoffmann et al., Phys. Rev. C21 (1980) 1488 andthe analyzing power data are given in Ref. 38. The 500 Me-V p + 40Ca HRS spin rotation data are from A. Rahbar et al., Phys. Rev. Lett. 47 (1981) 1811 while the 500 MeV 208Pb Q data are from B. Ass et al., Bull. Am. Phys Soc. 26 (1981) 1125; and B. Ass (private communication). The 800 MeV p + 160 cross section and analyzing power data are from G. S. Adams et al., Phys. Rev. Lett.43 (1979) 421.The 800 MeV Q data are from Ref. 23while the p + 40Ca, 318 and 650 MeV Q data are from B. Aas, priv. comm. The 400 MeV p + 12CAy data are from K. W. Jones et al., Ph. D. thes RutgersUniversity and Los Alamos National Laboratory, Los Alamos preprint LA-10064-T (unpublished) and K. W. Jones et al., to be submitted Phys.Rev.C (1985).Google Scholar
  30. 30.
    B. D. Serot and J. D. Walecka, to be published in Advances in Nuclear Physics, edited by J. W. Negele and E. Vogt (Plenum, New York).Google Scholar
  31. 31.
    J. A. Tjon and S. J. Wallace, Univ.of Maryland preprints #85-052 and ORO 5126-244 (1985) unpublished.Google Scholar
  32. 32.
    C. J. Horowitz, Phys. Rev.C31 (1985) 1340.Google Scholar
  33. 33.
    C. J. Horowitz, in the proceedings of the LAMPF workshop on “Dirac Approaches to Nuclear Physics,” Los Alamos National Laboratory Conference Report, Los Alamos, N.M. (1985), unpublished.Google Scholar
  34. 34.
    M. R. Anastasio, L. S. Celenza, W. S. Pong and C. M. Shakin, Phys. Rep. 100 (1983) 327.CrossRefGoogle Scholar
  35. 35.
    J. R. Shepard, E. Rost, and J. Piekarewicz, Phys. Rev. C30 (1984) 1604; E. Rost, J. R. Shepard, E. R. Siciliano and J. A. McNeil, Phys. Rev. C29 (1984) 209; and D. A. Sparrow et al., Phys.Rev. Lett. 54 (1985) 2207.Google Scholar
  36. 36.
    B. C. Clark et al., Phys. Rev. Lett. 53 (1984) 1423 and A. Picklesimer, P. C. Tandy and J. A. Tjon, unpublished.CrossRefGoogle Scholar
  37. 37.
    B. C. Clark, S. Hama, G. R. Kälberma nn, R. L. Mercer and L. Ray, submitted to Phys. Rev. Lett. (1985).Google Scholar
  38. 38.
    G. W. Hoffmann et al., Phys.Rev.C24 (1981) 541.Google Scholar
  39. 39.
    H. Feshbach, A. Gal, and J. Hüfner, Ann. Phys. (N. Y.) 66 (1971) 20; and E. Boridy and H. Feshbach, Ann. Phys. (N. Y.) 109 (1977) 468.CrossRefGoogle Scholar
  40. 40.
    J. A. McNeil, L. Ray and S. J. Wallace, Phys. Rev. C27 (1983) 2123.Google Scholar
  41. 41.
    A. Chaumeaux, V. Layly and R. Schaeffer, Ann. Phys. (N. Y.) 116 (1978) 247.CrossRefGoogle Scholar
  42. 42.
    J. D. Lumpe and L. Ray, unpublished.Google Scholar
  43. 43.
    B. C. Clark, S. Hama, and R. L. Mercer, in The Interaction Between Medium Energy Nucleons in Nuclei-1982, American Institute of Physics Conf. Proc. No. 97, edited by H. O. Meyer (American Institute of Physics Press, New York, 1983), p.260.Google Scholar
  44. 44.
    E. D. Cooper, Ph. D. thesis, University of Alberta, 1981 (unpublished).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • L. Ray
    • 1
  1. 1.Department of PhysicsThe University of Texas at AustinAustinUSA

Personalised recommendations