Rotating and vibrating Skyrmions

  • J. Wambach
Part I
Part of the Lecture Notes in Physics book series (LNP, volume 243)


The stability of rotating solitons is analyzed. It is found that both the linear σ-model and the chiral Skyrme Lagrangian (Skyrmion) yield unstable solutions with respect to pion emission. Introducing a symmetry breaking pion mass term stable solutions for the nucleon and the ▵(1232) are obtained in the Skyrme model. Furthermore with spherical symmetry, no parameter set is found which yields stable rotating solutions for both the nucleon and the delta, with correct masses. When parameters from earlier literature are used, the nucleon is stable but not the delta. To describe baryon excited states small amplitude fluctuations around the rotating solution are considered. The calculated P11 phase shift to the “breathing mode” excitation of the nucleon is compared to earlier results neglecting rotations and it is found that rotation-vibration coupling leads to sizable changes.


Solitary Wave Lagrange Density Skyrme Model Fourth Order Term Chiral Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.'t Hooft, Nucl. Phys. B72 (1974) 461; B75 (1974) 461.CrossRefGoogle Scholar
  2. 2.
    E. Witten, Nucl. Phys. B160 (1979) 57; B223 (1983) 433.CrossRefGoogle Scholar
  3. 3.
    E. Braaten, preprint 1985.Google Scholar
  4. 4.
    A. Jackson, A.D. Jackson and V. Pasquier, Nucl. Phys. A432 (1985) 567.Google Scholar
  5. 5.
    M. Kutschera, C. Pethick and G.C. Ravenhall, preprint 1985.Google Scholar
  6. 6.
    M. Gell-Mann and M. Levi, Nuov. Cim. 16 (1960) 705.Google Scholar
  7. 7.
    A. Bohr and B. Mottelson, Nuclear structure, Vol. II (Benjamin, Reading, MA, 1975).Google Scholar
  8. 8.
    C. Hajduk and B. Schwesinger, Phys. Lett. 145B (1984) 171.Google Scholar
  9. 9.
    T.H.R. Skyrme, Proc. Roy. Soc. A260 (1961) 127.Google Scholar
  10. 10.
    G.S. Adkins, C.R. Nappi and E. Witten, Nucl. Phys. B228 (1983) 552.CrossRefGoogle Scholar
  11. 11.
    M. Bander and F. Hayot, Phys. Rev. D30 (1984) 1837.Google Scholar
  12. 12.
    E. Braaten and J.P. Ralston, Phys. Rev. D31 (1985) 598.Google Scholar
  13. 13.
    R. Rajaraman, H.M. Sommermann, J. Wambach and H.W. Wyld, submitted to Phys. Rev. Lett.Google Scholar
  14. 14.
    G.S. Adkins and C.R. Nappi, Nucl. Phys. B233 (1984) 109CrossRefGoogle Scholar
  15. 15.
    J. Wambach and H.W. Wyld, in preparation.Google Scholar
  16. 16.
    H. Walliser and G. Eckart, Nucl. Phys. A429 (1984) 514.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. Wambach
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations