Isovectors and prolongation structures by Vessiot's vector field formulation of partial differential equations

  • Edward D. Fackerell
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 239)


Vector Field Nonlinear Pdes Distribution Versus Dual Language Order Pdes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.K. Harrison and F.B. Estabrook, J. Math. Phys. 12, 653–666 (1971)CrossRefGoogle Scholar
  2. 2.
    E. Cartan, Les Syztèmez Differentiels estérieurs et leurs Applicat-ionz Géométriques (Hermann, Paris, 1945)Google Scholar
  3. 3.
    H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16, 1–7 (1975).CrossRefGoogle Scholar
  4. 3.
    Also, F.B. Estabrook and H.D. Wahlquist, J. Math. Phys. 17, 1293–7 (1976)CrossRefGoogle Scholar
  5. 4.
    E. Vessiot, Bull. de la Soc. Math. de France, 42, 336–95 (1924)Google Scholar
  6. 5.
    ibid, (équation 111.6)Google Scholar
  7. 6.
    E. Vessiot, J. de Math. 18, 1–61 (1939); 21, 1–66 (1942)Google Scholar
  8. 7.
    F.B.Estabrook, Differenttial Geometry as a Tool for Applied Mathematicians in R. Martini, Ed., Geometrical Approachez to Differential Equations, Proceedings, Scheveningen, The Netherlands, 1979. Lecture Notes in Mathematics, 810 ( Springer-Verlag, Berlin, 1980 )Google Scholar
  9. 8.
    A.M. Vinogradov, Itogi Nauki i Tekniki, VINITI, Ser. Problemy Geometrii 11, 89–134 (1980). English translation in J. Soviet Math. 17, 1624-49 (1981)Google Scholar
  10. 9.
    E. Cartan, Bull. de la Soc. Math. de France,75, 1–8 (1947)Google Scholar
  11. 10.
    F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups ( Scott, Foresman and Company, Glenview, 1971 )Google Scholar
  12. 11.
    E. Goursat, Lecons sur l'Intégration des Equations aux Derivées Parttielles du Seconde Ordre à Deux Variables Indépendantes tome 2 pp 40–115 ( Paris: Librairie Scientifique A. Hermann, 1898 )Google Scholar
  13. 12.
    J.-F. Pommaret, Differential Galois Theory ( Gordon and Breach, New York, 1983 )Google Scholar
  14. 13.
    A.M. Vinogradov, Acta Applicandae Mathematicae, 2, 21–78 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Edward D. Fackerell
    • 1
  1. 1.Department of Applied MathematicsUniversity of SydneyNSWAustralia

Personalised recommendations