Modeling direct reactions

  • James J. Kelly
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 236)


We have developed a versatile procedure for modeling direct reactions that employs a linear expansion of the transition amplitude “tp”. Knowledge of either structure π or interaction t permits the evaluation of the unknown factor. We have used this procedure to investigate medium corrections to the two-nucleon effective interaction and the radial sensitivity of proton scattering.


Nuclear Matter Effective Interaction Nuclear Interior Medium Correction Incident Proton Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Bertozzi, Nucl. Phys. A374, 109c (1982); W. Bertozzi and J. Kelly, in New Horizons in Electromagnetic Physics, (University of Virginia, 1983), p 430.Google Scholar
  2. 2.
    F. Petrovich and W. G. Love, Nucl. Phys. A354, 499c (1981).Google Scholar
  3. 3.
    J. A. Carr, F. Petrovich, and J. Kelly, in Neutron-Nucleus Collisions — A Probe of Nuclear Structure, AIP Conf. Proc. No. 124, edited by J. Rapaport et al. (American Institute of Physics, New York, 1985), p. 230.Google Scholar
  4. 4.
    J. Heisenberg, Adv. Nucl. Phys. 12, 61 (1981), and references therein.Google Scholar
  5. 5.
    L. Ray, W. Rory Coker, and G. W. Hoffmann, Phys. Rev. C 18, 2641 (1978)Google Scholar
  6. 5.a
    L. Ray, Phys. Rev. C 19, 1855 (1979).Google Scholar
  7. 6.
    Microscopic Optical Potentials, Lecture Notes in Physics Vol. 89, edited by H. V. von Geramb (Springer-Verlag, Berlin, 1979).Google Scholar
  8. 7.
    J. Kelly et al., Phys. Rev. Lett. 45, 2012 (1980).Google Scholar
  9. 8.
    The Interaction Between Medium Energy Nucleons in Nuclei, AIP Conf. Proc. No. 97, edited by H. 0. Meyer (American Institute of Physics, New York, 1983).Google Scholar
  10. 9.
    L. Ray, in Ref. 8; M. L. Barlett, W. R. Coker, G. W. Hoffman, and L. Ray, Phys. Rev. C 29, 1407 (1984).Google Scholar
  11. 10.
    J. Kelly, in Ref. 8.Google Scholar
  12. 11.
    C. Mahaux, in Refs. 6 and 8.Google Scholar
  13. 12.
    J. Kelly, in Proc. of the Cretan International Meeting on Current Problems in Nuclear Physics (1985).Google Scholar
  14. 13.
    G. G. Ohlsen, Rep. Prog. Phys. 35, 717 (1972). Our Dαβ is the same as Kαβ as defined by Ohlsen.Google Scholar
  15. 14.
    F. A. Brieva and J. R. Rook, Nucl. Phys. A291, 299 (1977); A291, 317 (1977); A297, 206 (1978); A307, 493 (1978).Google Scholar
  16. 15.
    J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 10, 1391 (1974); 15, 10 (1977); 16, 80 (1977).Google Scholar
  17. 16.
    H. V. von Geramb, in Ref. 8, p. 144.Google Scholar
  18. 17.
    J. Kelly et al., submitted to Phys. Rev. C.Google Scholar
  19. 18.
    T. N. Buti et al., submitted to Phys. Rev. C.Google Scholar
  20. 19.
    W. G. Love and M. A. Franey, Phys. Rev. C 24, 1073 (1981).Google Scholar
  21. 20.
    F. Ajzenberg-Selove, Nucl. Phys. A375, 1 (1982).Google Scholar
  22. 21.
    P. Harihar et al., Phys. Rev. Lett. 53, 152 (1984).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • James J. Kelly
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations