Comparison of model-independent optical potential analyses

Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 236)


Analysing α−40Ca scattering data at Eα = 104 MeV a comparison is made between different model-independent optical potential descriptions. In particular the Fourier-Bessel expansion and the inverse Bargmann fit are considered. The ill-posed nature of optical potential analyses is studied showing the necessity of regularisation procedures. With the statistical regularisation apriori knowledge about the potential can be taken into account in the analysis in a consistent way. Although nearly unconstrained parametisations of the local optical potential or the S-matrix are used there remains a remarkable bias due to the specific ansatz.


Statistical Regularisation Optical Potential Model Dependence Model Independence Elastic Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    E.Friedman and C.J.Batty, Phys.Rev. C17 (1978)34Google Scholar
  2. 2).
    P.L.Roberson, Phys.-Rev. C22 (1980)482Google Scholar
  3. 3).
    H.P.Gubler, U.Kiebele, H.O.Meyer, G.R.Plattner, and I.Sick, Nucl. Phys. A351 (1981)29Google Scholar
  4. 4).
    L.W.Put and A.M.J.Paans, Nucl.Phys. A291 (1977)93Google Scholar
  5. 5).
    F.Michel and R.Vanderpoorten, Phys.Lett. 82B (1979)183Google Scholar
  6. 6).
    A.M.Kobos and R.S.Mackintosh, Ann. of Physics (N.Y.) 123 (1979)296Google Scholar
  7. 7).
    H.Leeb, H.Fiedeldey, and R.Lipperheide, Phys.Rev. C (in press)Google Scholar
  8. 8).
    H.J.Gils, H.Rebel, and E.Friedman, Phys.Rev. C29 (1984)1925Google Scholar
  9. 9).
    V.F.Turchin, V.P.Kozlov, and M.S.Malkevich, Usp.Fiz.Nauk. 102 (1971) 681(Sov.Phys.Uspekhi 13(1971)681)Google Scholar
  10. 10).
    W.T.Eadie, D.Dryard, F.E.James, M.Roos, and B.Sadoulet, Statistical Methods in Experimental Physics (North Holland, Amsterdam, 1971)Google Scholar
  11. 11).
    P.R.Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, N.Y., 1975)Google Scholar
  12. 12).
    D.Dreher, J.Friedrich, K.Merle, H.Rothhaas, and G.Lührs, Nucl.Phys. A235 (1974)219Google Scholar
  13. 13).
    R.Lipperheide and H.Fiedeldey, Z.Physik A286 (1978)45Google Scholar
  14. 14).
    R.Lipperheide and H.Fiedeldey, Z.Physik A301 (1978)81Google Scholar
  15. 15).
    K.Naidoo, H.Fiedeldey, S.A.Sofianos, and R.Lipperheide, Nucl.Phys. A419 (1984)13Google Scholar
  16. 16).
    B.N.Zakhar'ev, V.N.Pivovarchik, E.B.Plekhonov, and A.A.Suz'ko, Fiz.Elem.Chastits At.Yadra 13 (1982)1284 (Sov.J.Part.Nucl. 13(1983)535)Google Scholar
  17. 17).
    H.J.Krappe and H.Rossner, Z.Phys. A314 (1983)149Google Scholar
  18. 18).
    D.L.Philipps, J.Assoc.Comp.Mech. 9 (1962)84 *** DIRECT SUPPORT *** A3418192 00005Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. Leeb
    • 1
  1. 1.Institut für KernphysikTechnische Universität WienWienAustria

Personalised recommendations