Measurement of wall shear stress in favorable pressure gradients

  • Donald M. McEligot
III. Instability and Turbulence
Part of the Lecture Notes in Physics book series (LNP, volume 235)


A numerical technique has been developed to determine the mean wall shear stress from a single mean velocity measurement outside the so-called linear layer in turbulent flows with pressure gradients imposed. The technique was tested and apparently verified by application to measurements from two accelerating turbulent flows.


Pressure Gradient Wall Shear Stress Turbulence Model Experimental Uncertainty Turbulent Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, M., and M.P. Escudier, 1983: Measurements of the wall shear stress in boundary-layer flows. Proc., 4th Int. Symp. Turbulent Shear Flows, Karlsruhe.Google Scholar
  2. Bearman, P.W., and M.M. Zdravkovich, 1978: J. Fluid Mech., 89, pp. 33–47.Google Scholar
  3. Bhatia, J.C., F. Durst and J. Jovanovic, 1982: J. Fluid Mech., 122, pp. 411–431.Google Scholar
  4. Cebeci, T., 1970: AIAA J., 8, pp. 2152–56.Google Scholar
  5. Coles, D.E., 1955:50 Jahre Grenzschichtforschung, p. 153, Braunschweig: F. Vieweg.Google Scholar
  6. Eckelmann, H., 1974: J. Fluid Mech. 65, pp. 439–459.Google Scholar
  7. Froude, W., 1872: Experiments on the surface-friction experienced by a plane moving through water. 42nd Brit. Assn. Rept., pp. 118–124.Google Scholar
  8. Huffman, G.D., and P. Bradshaw, 1972: J. Fluid Mech., 53, pp. 45–60.Google Scholar
  9. Kays, W.M., and M.E. Crawford, 1980: Convective heat and mass transfer. 2nd ed. McGraw-Hill.Google Scholar
  10. Kline, S.J., and F.A. McClintock, 1953: Mech. Engng. 75, pp. 3–8.Google Scholar
  11. Launder, B.E., 1964: Rpt. 77, MIT Gas Turbine Lab. Also NASA N66-16042.Google Scholar
  12. Launder, B.E., and W.P. Jones, 1969: J. Fluid Mech., 38, pp. 817–831.Google Scholar
  13. McEligot, D.M., 1963: Ph.D. thesis, Stanford University, TID-19446.Google Scholar
  14. McEligot, D.M., 1984: Bericht, MPI für Strömungsf., Göttingen.Google Scholar
  15. McEligot, D.M., and C.A. Bankston, 1969: ASME paper 69-HT-52, U.S. National Heat Transfer Conf., Minneapolis.Google Scholar
  16. McEligot, D.M., L.W. Ormand and H.C. Perkins, 1966: ASME J. Heat Transfer, 88, pp. 239–245.Google Scholar
  17. Murphy, H.D., F.W. Chambers and D.M. McEligot, 1983: J. Fluid Mech., 127, pp. 379–401Google Scholar
  18. Narasimha, R., and K.R. Screenivasan, 1979: Adv. Appl. Mech, 19, pp. 221–309.Google Scholar
  19. Oka, S., and Z. Kostic, 1972: DISA Information, No. 13, pp. 29–33.Google Scholar
  20. Patel, V.C., and M.R. Head, 1969: J. Fluid Mech., 38, pp. 181–201.Google Scholar
  21. Randolph, M., 1983: Diplomarbeit, Georg-August-Universität, Göttingen.Google Scholar
  22. Reichardt, H., 1951: Z. Angew. Math. Mech., 31, p. 208.Google Scholar
  23. Reynolds, H.C., T.B. Swearingen and D.M. McEligot, 1969: ASME J. Basic Engr., 91, pp. 87–94.Google Scholar
  24. Simpson, R.L., and D.B. Wallace, 1975: Laminarescent turbulent boundary layers: experiments on sink flows. Project Squid Techn. Rep. SMU-1-PU, Thermal Science and Propulsion Center, Purdue University.Google Scholar
  25. Sreenivasan, K.R., 1983: Personal communication, Mech. Engr. Dept., Yale Univ.Google Scholar
  26. van Driest, E.R., 1956: J. Aerospace Sci., 23, pp. 1007–1011 and 1036.Google Scholar
  27. Willmarth, W.W., R.E. Winkel, L.K. Sharma and T.J. Bogar, 1976: J. Fluid Mech., 76, pp. 35–64.Google Scholar
  28. Winter, K.G., 1977: Prog. Aerospace Sci., 18, pp. 1–57.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Donald M. McEligot
    • 1
    • 2
  1. 1.Gould Ocean Systems DivisionMiddletownUSA
  2. 2.Max-Planck-Institut für Strömungsforschung GöttingenGöttingenBRD

Personalised recommendations