A reduction strategy for the taylor resolution

  • H. Michael Möller
Algebraic Algorithms VI
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


Reduction Strategy Hilbert Function Critical Pair Monomial Ideal Minimal Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BAY]
    D.A.Bayer, The division algorithm and the Hilbert scheme, Ph.D.Thesis, Havard (1982).Google Scholar
  2. [BU1]
    B.Buchberger, A critical-pair/completion algorithm for finitely generated ideals in rings, Springer L.N. in Comp. Sci. 171 (1983).Google Scholar
  3. [BU2]
    B.Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in: Recent Trends in Multidimensional Systems Theory (ed.: N.K.Bose), D. Reidel Publ. Comp. 1984.Google Scholar
  4. [BU3]
    B. Buchberger, A criterion for detecting unnecessary reductions in the construction of Gröbner bases, Proc. EUROSAM 79, Springer L.N. in Comp.Sci. 72 (1979) 3–21.Google Scholar
  5. [GIU]
    M. Giusti, Some effectivity problems in polynomial ideal theory, Springer L.N. in Comp. Sci. 174 (1984), 159–171.Google Scholar
  6. [MM1]
    H.M.Möller and F.Mora, New constructive methods in classical ideal theory, to appear in J. of Algebra.Google Scholar
  7. [MM2]
    H.M. Möller and F. Mora, The computation of the Hilbert function, Proc. EUROCAL 83, Springer L.N. in Comp.Sci. 162 (1983), 157–167.Google Scholar
  8. [MM3]
    H.M.Möller and F.Mora, Computational aspects of reduction strategies to construct resolutions of monomial ideals, submitted for publication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. Michael Möller
    • 1
  1. 1.FB Mathematik und InformatikFernUniversität HagenHagen 1BRD

Personalised recommendations