Advertisement

An algorithmic approach to local rings

  • Ferdinando Mora
Algebraic Algorithms VI
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)

Keywords

Prime Ideal Local Ring Polynomial Ring Form Ring Invertible Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bu1]
    B.BUCHBERGER,Ein Algorithmus zum auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D.Dissertation,Univ.Innsbruck, 1965Google Scholar
  2. [BU2]
    B. BUCHBERGER, Ein algorithmisches Kriterium für die Losbarkeit eines algebraischen Gleichungssystems, Aeq.Math. 4 (1970) 374–383Google Scholar
  3. [BU3]
    B.BUCHBERGER,Gröbner bases:an algorithmic method in polynomial ideal theory,in: N.K.BOSE (ed.) Recent trends in multidimensional systems theory,Reidel (1984)Google Scholar
  4. [GRO]
    W.GROEBNER,Algebraische Geometrie,2 voll.,Mannheim (1968)Google Scholar
  5. [HIR]
    H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann.Math. 79 (1964) 109–326Google Scholar
  6. [M-M]
    H.M. MOELLER, F. MORA, The computation of the Hilbert function,Proc.EUROCAL 83, L. N.Comp.Sci. 162 (1983) 157–167Google Scholar
  7. [MOR]
    F. MORA; An algorithm to compute the equations of tangent cones,Proc.EUROCAM 82, L.N.Comp.Sci. 144 (1982) 158–165Google Scholar
  8. [TRI]
    W. TRINKS Ueber B.Buchbergers Verfahren,Systeme algebraischer Gleichungen zu losen, J.Numb.Th. 10 (1978) 475–488Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ferdinando Mora
    • 1
  1. 1.Università di GenovaItaly

Personalised recommendations