Advertisement

Term orderings on the polynomial ring

  • Lorenzo Robbiano
Algebraic Algorithms VI
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B1]
    B; Buchberger "An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal (in German)". Ph. D. Thesis Univ. of Innsbruch (1965).Google Scholar
  2. [B2]
    B. Buchberger "An algorithmical criterion for the solvability of algebraic systems of equations (in German)" Aequationes Mathematicae 4 (1970) p. 374–383.CrossRefGoogle Scholar
  3. [B3]
    B;Buchberger "Gröbner Bases: An algorithmic method in polynomial ideal theory". CAMP. LINZ Publ. Nr 83.29.0. To appear as Chapter 6 in "Recent Trends in Multidimensional Systems Theory" Reidel Publ. Comp. (1985).Google Scholar
  4. [G]
    A; Galligo "Théorème de division et stabilité en géométrie analytique locale" Annales de l'Institut Fourier de l'Université de Grenoble XXIX p. 107–184 (1979).Google Scholar
  5. [H]
    H; Hironaka "Resolution of singularities of an algebraic variety over a field of characteristic zero" Annals of Math. 79 (1964) p. 109–326.Google Scholar
  6. [K]
    C. Kollreider "Polynomial reduction: the influence of the ordering of terms on a reduction algorithm" Univ. of Linz Bericht 124 (1978).Google Scholar
  7. [R]
    L. Robbiano "On the theory of graded structures" Preprint of the Max-Planck Institut für Mathematik in Bonn (1985).Google Scholar
  8. [Z-S]
    O; Zariski — P; Samuel "Commutative Algebra Vol II" Van Nostrand Princeton (1960)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Lorenzo Robbiano
    • 1
  1. 1.Istituto Matematico dell'Università di GenovaGenovaItaly

Personalised recommendations