An algorithm for the computation of perfect polyhedral cones over real quadratic number fields

  • H. Ong
  • D. Golke
Computational Number Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


Quadratic Form Formal Language Real Dimension Reduction Theory Sphere Packing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Finke, U. and Pohst, M.; Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, to appear.Google Scholar
  2. [2]
    Koecher, M.; Beiträge zu einer Reduktionstheorie in Positivitätsbereichen I, Math. Ann. 141 (1960), 384–432.CrossRefGoogle Scholar
  3. [3]
    Leech, J. and Sloane, N.J.A.; Sphere packings and error-correcting codes, Can.J. Math., Vol. XXIII, No.4 (1971), 718–745.Google Scholar
  4. [4]
    Ong, H.; Vollkommene quadratische Formen über reell-quadratischen Zahlkörpern, Dissertation Frankfurt 1983.Google Scholar
  5. [5]
    Voronoi, G.; Sur quelques propriétés des formes quadratiques positives parfaites, J.Reine Angew. Math. 133 (1908), 97–178.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. Ong
    • 1
  • D. Golke
    • 2
  1. 1.Fachbereich MathematikUniversität FrankfurtFrankfurt a.M.Germany
  2. 2.IBM FrankfurtFrankfurt a.M.Germany

Personalised recommendations