The generalized Voronoi-algorithm in totally real algebraic number fields

  • Johannes Buchmann
Computational Number Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


Minimal Point Algebraic Number Fundamental Unit Algebraic Number Theory Algebraic Number Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bachem, A.; Kannan R. Lattices and basis reduction algorithm Preprint, Köln 1984Google Scholar
  2. [2]
    Borewicz, S.I.; Safarevic, I.R. Zahlentheorie Basel und Stuttgart 1966Google Scholar
  3. [3]
    Buchmann, J. A generalization of Voronoi's unit algorithm I, II To appear in J. Number TheoryGoogle Scholar
  4. [4]
    Delone, B.N.; Faddeev, D.K. The theory of irrationalities of the third degree Am. Math. Soc. Transl. of Math. Monographs 10 (1964)Google Scholar
  5. [5]
    Lenstra, A.K.; Lenstra, H.W.Jr.; Lovasz, L. Factoring polynomials with rational coefficients Math. Ann. 261 (1982), pp. 513–534CrossRefGoogle Scholar
  6. [6]
    Lenstra, H.W.Jr. Integer programming with a fixed number of variables Mathem. Oper. Res. 8 (1983), pp. 538–548Google Scholar
  7. [7]
    Narkiewicz, W. Algebraic numbers Warszawa 1974Google Scholar
  8. [8]
    Pohst, M. A number geometric method for testing isomorphy in algebraic number fields To appearGoogle Scholar
  9. [9]
    Pohst, M.; Weiler, P.; Zassenhaus, H. On effective computation of fundamental units I, II Math. Comp. 38, (1982), pp. 275–328Google Scholar
  10. [10]
    Steiner, R.P. On the units in algebraic number fields Proc. 6th. Manitoba Conf. Num. Math. (1976), pp. 413–435Google Scholar
  11. [11]
    Zimmer, H.G. Computational problems, methods and results in algebraic number theory Lect. Notes in Math. 262 (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Johannes Buchmann
    • 1
  1. 1.Mathematisches Institut der Universität zu KölnGermany

Personalised recommendations