Symbolic and algebraic computation may support secondary education

  • Helder Coelho
Applications IV
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


The broad aim of this research is to transfer knowledge from the experienced to the inexperienced person, and in a way to improve the teaching ability of symbolic and algebraic manipulation by delivering knowledge-based experimental kits to school la boratories of Mathematics. These kits are simple aids for special demonstrations and experiments in reasoning, based upon the paradigm of computation as controlled de — duction. Also, they envisage to raise knowledge distribution.


Logic Programming Computer Language Teaching Ability Geometry Theorem Geometry Theorem Prove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bundy, A. et al., MECHO: a Program to solve Mechanics problems, Working Paper, Department of Artificial Intelligence, University of Eddnburgh, 1979.Google Scholar
  2. Bundy, A. and Sterling, L., Meta-level inference in Algebra, Proc. of the Workshop on Logic Programming for Intelligent Systems, 1981.Google Scholar
  3. Coelho, H. and Pereira, L.M., GEOM: a Prolog geometry theorem prover, (LNEC, Lisboa, 1975).Google Scholar
  4. Coelho, H. and Cotta, J.C., How to teach, learn and use Prolog by example (to be pu blished, 1985).Google Scholar
  5. Ennals, R., Logic as a computer language for children:a one year course, Department of Computing, Imperial College, 1981.Google Scholar
  6. Kowalski, R., Logic as a computer language for children, Proceeding of ECAI, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Helder Coelho
    • 1
  1. 1.Laboratorio Nacional de Engenharia CivilCentro de InformaticaLisboa CodexPortugal

Personalised recommendations