An overview of completion algorithms

  • Regina Llopis de Trias
Rewrite Rules And The Completion Procedure II
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


Canonical Form Equational Theory Polynomial Ideal Unification Algorithm Critical Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayoub, C. W., 1981: On constructing bases for ideals in polynomial rings over the integers. Techn. Rep. no. 8184, Pennsylvania State Univ., Univ.Google Scholar
  2. Bergman, G. M., 1978: The diamond lemma for ring theory. Advances in Math., vol. 29, pp. 178–218.Google Scholar
  3. Buchberger, B., 1965: An algorithm for finding a basis for the residue class ring of a zero-dimensional polynomial ideal (German). Ph.D. Thesis, Univ. of Innsbruck (Austria), Math. Inst..Google Scholar
  4. Buchberger, B., 1979: A criterion for detecting unnecessary reductions in the construction of Gröbner bases. Proc. EUROSAM 79, Marseille, June 1979, (W. Ng, ed.), Lecture Notes in Computer Science. vol. 72, pp. 3–21.Google Scholar
  5. Buchberger, B., and Loos, R., 1982: Algebraic simplification. In: Computer Algebra — Symbolic and Algebraic Computation (B. Buchberger, G. Collins, R. Loos eds.), Springer, Wien — New York, pp. 11–43.Google Scholar
  6. Butler, G., Lankford, D., 1984: Dickson's Lemma, Hilbert's Basis Theorem, and applications to completion in commutative noetherian rings. Dept. Math. and Stat. Louisiana Tech. University.Google Scholar
  7. Caviness, B. F., 1970: On canonical forms and simplification. Ph.D. Diss., Pittsburgh, Carnegie-Mellon University, 1967, and J. ACM 17/2, 1970.Google Scholar
  8. Davis, M., Putnam, H., Robinson, J., 1961: The decision problem for exponential diophantine equations. Ann. Math. 74, 425.436.Google Scholar
  9. Dershowitz, N., 1979 A: Orderings for term-rewriting systems. Proc. 20th Symp. on Foundations of Comp. Sci., 123–131.Google Scholar
  10. Dershowitz, N., 1979 B: A note on simplification orderings. Inf. Process. Lett. 9/5, 212–215.CrossRefGoogle Scholar
  11. Dershowitz, N., 1982: Orderings for term-rewriting systems. Theoretical Computer Science Vol. 17.Google Scholar
  12. Evans, T., 1951: On multiplicative systems defined by generators and relations. I. Normal forms theorems, Proc. Cambridge Philosophy Soc. 47.Google Scholar
  13. Fages, F., 1983 A: Formes canoniques dans les algebres booleennes et applications a la demonstration automatique en logique de premier ordre. These 3eme cycle, Universite Paris 7 LITP.Google Scholar
  14. Fages, F., Huet, G., 1983 B: Complete seta of unifiers and matchers in equational theories. CAAP'83, LNCS 159, Springer-Verlag.Google Scholar
  15. Fay, M., 1979: First order unification in equational theory. 4th Workshop on Automated Deduction, Austin, Texas.Google Scholar
  16. Hsiang, J., 1982: Topics in automated theorem proving and program generation. Ph. D. Thesis, Univ. of Illinois at Urbana-Champaign, Dept. of Comp. Scie..Google Scholar
  17. Huet, G., Lankford, D. S., 1978: On the uniform halting problem for term rewriting systems. IRIA rapport Laboria 283.Google Scholar
  18. Huet, G., Oppen, D. C., 1980: Equations and rewriting rules: A survey. Tech. Rep. CSL-111, SRI International, Stanford.Google Scholar
  19. Huet, G., 1981: A complete proof of the Knuth-Bendix completion algorithm. J. Comp. and System Sci. 23.Google Scholar
  20. Hullot, J. M., 1980: Compilation de formes canoniques dans les theories equationnelles. Tese 3eme cycle, U. Paris Sud.Google Scholar
  21. Jouannaud, J. P., Lescanne, P., Reining, F., 1982: Recursive decomposition ordering. Conf. on Formal Description of Programming Concepts, Ed. D. Bjorner, North Holland.Google Scholar
  22. Kamin, S., Levy, J., 1980: Attempts for generalizing the recursive path ordering. Unpublished.Google Scholar
  23. Knuth, D. E., Bendix, P. B., 1967: Simple word problems in universal algebras. Proc. of the Conf. on Computational Problems in Abstract Algebra, Oxford, 1967, (Leech, J. ed.), Pergamon Press, Oxford, 1970.Google Scholar
  24. Lankford, D. S., 1975: Canonocal inference. Univ. of Texas, Austin: Dept. Math. Comput. Sci., Rep. ATP-32.Google Scholar
  25. Lankford, D. S., Ballantyne, A. M., 1977 A: Decision procedures for simple equational theories with commutative axioms: Complete sets of commutative reductions. Univ. of Texas, Austin: Dept. Math. Comput. Sci., Rep. ATP-35.Google Scholar
  26. Lankford, D. S., Ballantyne, A. M., 1977 B: Decision procedures for simple equational theories with permutative axioms: Complete sets of permutative reductions. Univ. of Texas, Austin: Dept. Math. Comput. Sci., Rep. ATP-37.Google Scholar
  27. Lankford, D. S., Ballantyne, A. M., 1977 C: Decision procedures for simple equational theories with commutative-associative axioms: Complete sets of commutative-associative reductions. Univ. of Texas, Austin: Dept. Math. Comput. Sci., Rep. ATP-39.Google Scholar
  28. Lankford, D. S., 1979 A: A unification algorithm for Abelian Group theory. Rep. MTP-1, Math. Dept. Lousiana Tech. U.Google Scholar
  29. Lankford, D. S., 1979 B: Some new approaches to the theory and applications of conditional rewriting systems. Math. Dept. Louisiana Tech. U.Google Scholar
  30. Le Chenadec, P., 1983: Canonical forms in finitely presented algebras (French). Ph. D. Thesis, Univ. of Paris-Sud, Centre d' Orsay.Google Scholar
  31. Lescanne, P., 1982: Computer experiments with REVE term rewriting system generator. Proc. 10th POPL conference.Google Scholar
  32. Livesey, M., Siekmann, J., 1976: Unification of bags and sets. Internal report 3/76, Inst. f. Informatik I, U. Karlsruhe.Google Scholar
  33. Llopis de Trias, R., 1983: Canonical forms for residue classes of polynomial ideals and term rewriting systems. Dept. U.S.B. rep. 84-03.Google Scholar
  34. Makanin, G.S., 1977: The Problem of Solvability of Equations in a Free Semigroup. Akad. Nauk. SSSR, TOM 233,2.Google Scholar
  35. Manna, Z., Ness, S., 1970: On the Termination of Markov Algorithms. Third Hawai International Conference on System Sciences., 789–792.Google Scholar
  36. Martelli, A., Montanari, U., 1982: An Efficient Unification Algorithm. ACM TOPLAS, Vol. 4, No. 2.Google Scholar
  37. Matiyasevic, J., 1970: Diophantine representation of recursively enumerable predicates. Proc. Second Scandinavian Logic Symposium, Amsterdam, North Holland.Google Scholar
  38. Moses, J., 1971: Algebraic Simplification: A Guide for the Perplexed. Comm. of the ACM, Vol. 14/8, pp.527–537.Google Scholar
  39. Newman, M.H.A., 1942: On Theories With a Combinatorial Definition of "Equivalence". Annals of Math., Vol.43/2, pp.223–243.Google Scholar
  40. Peterson, G.E., Stickel, M.E., 1981: Complete Set of Reductions for Equational Theories. J. ACM 28/2.Google Scholar
  41. Plaisted, D., 1978: A Recursively Defined Ordering for Proving Termination of Term Rewriting Systems. Univ. of Illinois at Urbana-Champaign, Dept. of Comp. Science, Report 78-943.Google Scholar
  42. Plotkin, G., 1972: Building-In Equational Theories. Machine-Intelligence, Vol. 7, 73–90.Google Scholar
  43. Richardson, D., 1968: Some Unsolvable Problems Involving Elementary Functions of a Real Variable. J. of Symbolic Logic Vol.33, pp.511–520.Google Scholar
  44. Robinson, J.A., 1965: Machine-Oriented Logic Based on the Resolution Principle. J. of the ACM, Vol.12(1), 23–41.CrossRefGoogle Scholar
  45. Rody, A.K., Kapur, D., 1984: Algorithms for computing Gröbner Bases of polynomial ideals over various euclidean rings. EUROSAM 84, Cambridge.Google Scholar
  46. Siekmann, J., 1978: Unification and Matching Problems. Ph.D. Thesis, Univ. of Essex, Memo CSM-4-78.Google Scholar
  47. Slagle, J.R., 1974: Automated Theorem Proving for Theories with Simplifiers, Commutativity and Associativity. Journal ACM Vol.21, pp.622–642.Google Scholar
  48. Stickel, M. E., 1981: A unification algorithm for associative commutative functions. J. ACM. 28/3.Google Scholar
  49. Winkler, F., 1983: A unification algorithm for constructing detaching bases in the ring of polynomials over a field. Computer Algebra LNCS 162, Springer-Verlag.Google Scholar
  50. Winkler, F., 1984: The Church-Rosser property in computer algebra and special theorem proving: An investigation of critical pair completion algorithms. Dissertation, Joh. Kepler University, Linz.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Regina Llopis de Trias
    • 1
  1. 1.Universidad Simòn BolìvarCaracasVenezuela

Personalised recommendations