Goppa codes: Algorithmic problems

  • Martin Becker
  • Günter Schellenberger
Applications III
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


Linear Code Function Field Laurent Series Algorithmic Problem Ground Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Goppa, V.D.: Algebraico-geometric codes, Math. USSR-Isv. 21 (1983), 75–91Google Scholar
  2. Tsfasman, M.A., Vladut, S.G. and Zink, I.: Modular curves, Shimura curves and Goppa codes better than the Varshamov-Gilbert bound, Problems Inform. Transmission 18 (1982), 163–166Google Scholar
  3. Manin, J.I.: What is the maximum number of points on a curve over FF2? J. Fac. Sci. Univ. Tokyo, Sect. I A Math. 28 (1981), 715–720Google Scholar
  4. Hirschfeld, J.W.P.: Linear codes and algebraic curves, Preprint.Google Scholar
  5. Schellenberger, G.: Residuen Algebraischer Funktionen und Goppacodes: Theoretische Grundlagen und softwaretechnische Behandlung, Diplomarbeit im Fach Informatik an der Friedrich-Alexander-Universität ErlangenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Martin Becker
    • 1
  • Günter Schellenberger
    • 1
  1. 1.University of Erlangen-Nürnberg (IMMD)Germany

Personalised recommendations