Arithmetic in quadratic fields with unique factorization

  • Erich Kaltofen
  • Heinrich Rolletschek
Algebraic Algorithms IV
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


In a quadratic field Q(\(\sqrt D\)), D a squarefree integer, with class number 1 any algebraic integer can be decomposed uniquely into primes but for only 21 domains Euclidean algorithms are known. We prove that for D⩽−19 even remainder sequences with possibly non-decreasing norms cannot determine the GCD of arbitrary inputs. We then show how to compute the greatest common divisor of the algebraic integers in any fixed Q(\(\sqrt D\)) with class number 1 in O (S2) binary steps where S is the number of bits needed to encode the inputs. We also prove that in any domain the computation of the prime factorization of an algebraic integer can be reduced in polynomial-time to factoring its norm into rational primes. Our reduction is based on a constructive version of a theorem by A. Thue. Finally we present another GCD algorithm for complex quadratic fields based on a short lattice vector construction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barnes, E.S., and Swinnerton-Dyer, H.P.F.: The homogeneous minima of binary quadratic forms. Acta Math. 87, 255–323 (1952).Google Scholar
  2. [2]
    Brauer, A., and Reynolds, R.L.: On a theorem of Aubry-Thue. Canadian J. Math. 3, 367–374 (1951).Google Scholar
  3. [3]
    Chatland, H., and Davenport, H.: Euclid's algorithm in real quadratic fields. Canadian J. Math. 2, 289–296 (1950).Google Scholar
  4. [4]
    Caviness, B.F., and Collins, G.E.: Algorithms for Gaussian integer arithmetic. Proc. 1976 ACM Symp. Symbolic Algebraic Computation, 36–45.Google Scholar
  5. [5]
    Hardy, G.H., and Wright, E.M.: An Introduction to the Theory of Numbers. Oxford Univ. Press 1979.Google Scholar
  6. [6]
    Hasse, H.: Vorlesung über die Zahlentheorie. Springer Verlag, Berlin 1950.Google Scholar
  7. [7]
    Kaltofen, E.: On the complexity of finding short vectors in integer lattices. Springer Lec. Notes Comp. Sci. 162, 236–244 (1983).Google Scholar
  8. [8]
    Kannan, R.: Improved algorithms for integer programming and related lattice problems. Proc. 15th ACM Symp. Theory Comp., 193–206 (1983).Google Scholar
  9. [9]
    Kannan, R., and Bachem, A.: Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix. SIAM J. Comp. 8, 499–507 (1979).Google Scholar
  10. [10]
    Knuth, D.E.: The Art of Programming, Vol. 2, Seminumerical Algorithms, 2nd Ed. Reading, MA: Addison Wesley 1981.Google Scholar
  11. [11]
    Lenstra, A. K., Lenstra, H. W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982).CrossRefGoogle Scholar
  12. [12]
    Nagell, T.: Sur un theoreme d'Axel Thue. Arkiv för Matematik 1, 33, 489–496 (1951).Google Scholar
  13. [13]
    Rolletschek, H.: The Euclidean algorithm for Gaussian integers. Springer Lec. Notes Comp. Sci. 162, 12–23 (1983).Google Scholar
  14. [14]
    Rolletschek, H.: On the number of divisions of the Euclidean algorithm applied to Gaussian integers. Submitted to the Journal of Symbolic Computation.Google Scholar
  15. [15]
    Schnorr, C.P.: A remark on the construction of short lattice elements. Manuscript April 1984.Google Scholar
  16. [16]
    Schönhage, A.: Schnelle Berechnung von Kettenbruchentwicklungen. Acta Inf. 1, 139–144 (1971).Google Scholar
  17. [17]
    Schönhage, A.: Factorization of Univariate Integer Polynomials by Diophantine Approximation and by an Improved Reduction Algorithm. Proc. Internat. Conf. Automata, Lang. and Prog. 1984.Google Scholar
  18. [18]
    Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Manuscript 1983.Google Scholar
  19. [19]
    Shanks, D.: Solved and Unsolved Problems in Number Theory I, 2nd Ed. Chelsea Publishers, 1978.Google Scholar
  20. [20]
    Stark, H.: A complete determination of complex quadratic fields of class number one. Mich. Math. J. 17, 1–27 (1967).Google Scholar
  21. [21]
    Thue, A.: Et par antydninger til en talteoretisk methode. Vid. Selsk. Forhandlinger Christiania 7 (1902), in Norwegian.Google Scholar
  22. [22]
    Wang, P.: A p-adic algorithm for univariate partial fractions. Proc. 1981 ACM Symp. Symbolic and Alg. Comp., 212–217.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Erich Kaltofen
    • 1
  • Heinrich Rolletschek
    • 2
  1. 1.Department of Computer ScienceRensselaer Polytechnic InstituteTroy
  2. 2.Department of MathematicsKent State UniversityKent

Personalised recommendations