Infinite dimensional computer Lie algebra ?

  • Terje Wahl
Applications II
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


Cartan Matrix Involutive Automorphism Finite Codimension Invariant Bilinear Form Famous Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. H Goldstein: Classical Mechanics, Addison-Wesley, 1980.Google Scholar
  2. M Hazewinkel (ed): Stochastic Systems, NATO Adv Stud Inst Ser C Vol 78, D Reidel, 1981.Google Scholar
  3. G Hori: Publ A S Japan Vol 18, 287, 1966.Google Scholar
  4. V G Kac: Infinite Dimensional Lie Algebras, Birkhauser, 1983.Google Scholar
  5. F Levstein: A classification of involutive automorphisms of an affine Kac-Moody Lie algebra, Ph D thesis, MIT, 1983.Google Scholar
  6. M: MACSYMA Reference Manual, Laboratory for Computer Science, Massachusetts Institute of Technology (MIT), 1983.Google Scholar
  7. T Wahl, T Wentzel-Larsen: A note on quasisimple Lie algebras. NDH-RAPPORT 1984:5, Bodø, Norway.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Terje Wahl
    • 1
  1. 1.Norwegian Defence Research EstablishmentKjellerNorway

Personalised recommendations