On decomposable and commuting polynomials

Algebraic Algorithms II
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


  1. 1.
    Evyatar, A. and Scott, D.B.: On polynomials in a polynomial. Bull. London Math. Soc. 4 (1972) 176–178.Google Scholar
  2. 2.
    Fried, M. and MacRae, R.E.: On the invariance of chains of fields. Illinois J. Math. 13 (1969) 165–171.Google Scholar
  3. 3.
    Fried, M.: On a conjecture of Schur. Michigan Math. J. 17 (1970) 41–55.Google Scholar
  4. 4.
    Fried, M.D.: Arithmetical properties of Function fields (II) The generalized Schur problem. Acta Arith. 25 (1974) 225–258.Google Scholar
  5. 5.
    Lidl, R. and Mullen, G.L.: Commuting polynomial vectors over an integral domain. Acta Arith. (To appear).Google Scholar
  6. 6.
    Lidl, R. and Müller, W.B.: Permutation polynomials in RSA-cryptosystems. Advances in Cryptology (ed. D. Chaum) Plenum Publ. 1984, pp.293–301.Google Scholar
  7. 7.
    Lidl, R. and Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University Press. (To appear).Google Scholar
  8. 8.
    Matthews, R.: Permutation polynomials over algebraic number fields. J. Number Theory 18 (1984) 249–260.Google Scholar
  9. 9.
    Schinzel, A.: Selected Topics on Polynomials. University of Michigan Press, Ann Arbor, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. Lidl
    • 1
  1. 1.University of TasmaniaHobartAustralia

Personalised recommendations