Progress on the equivalence problem

  • J. E. Åman
  • R. A. d'Inverno
  • G. C. Joly
  • M. A. H. MacCallum
Applications I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


The equivalence problem in general relativity arises from the arbitrariness of coordinate choice and is the problem of deciding whether two apparently, different space-times are (locally) identical or not. Here we review the basic procedure for resolving this question, and its practical implementation, as presented in previous papers, and report on recent theoretical and practical research in this area. Some of the techniques are of interest in other problems; in particular, they may be applicable to tests of the equivalence of systems of differential equations.


Equivalence Problem Riemann Tensor Differential Invariant Frame Bundle Petrov Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E. Åman and A. Karlhede, Phys. Lett. 80A (1980) 229.Google Scholar
  2. 2.
    A. Karlhede and J.E. Åman, Abstracts of contributed papers, 9th International Conference on General Relativity and Gravitation (1980) 104.Google Scholar
  3. 3.
    J.E. Åman and A. Karlhede, Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic Computation (Symsac '81) (1981) 79.Google Scholar
  4. 4.
    M.A.H. MacCallum, in ‘Unified Field Theories of more than 4 dimensions, including exact solutions’ ed. V. de Sabbata and E. Schmutzer, World Scientific, Singapore (1983).Google Scholar
  5. 5.
    I. Cohen, I. Frick, and J.E. Åman, in "General Relativity and Gravitation" ed. B. Bertotti, F. de Felice and A. Pascolini (Proceedings of the 10th international conference) D. Reidel, Dordrecht (1984).Google Scholar
  6. 6.
    M.A.H. MacCallum, in ‘Classical General Relativity’ ed. W.B. Bonnor, J.N. Islam and M.A.H. MacCallum. Cambridge University Press (1984).Google Scholar
  7. 7.
    J.E. Åman ‘Manual for CLASSI — Classification Programs for Geometries in General Relativity', preprint, Inst. of Theoretical Physics, University of Stockholm (1982).Google Scholar
  8. 8.
    T.Y. Thomas, ‘Differential invariants of generalised spaces', Cambridge University Press (1934).Google Scholar
  9. 9.
    E. Cartan, ‘Lecons sur la geometrie des espaces de Riemann’ Gauthier-Villars, Paris (1946).Google Scholar
  10. 10.
    J. Ehlers, in ‘E.B. Christoffel’ ed. P.L. Butzer and E. Feher, Birkhauser Verlag, Berlin (1981).Google Scholar
  11. 11.
    A. Karlhede, Gen. Rel. and Grav. 12, 693 (1980).Google Scholar
  12. 12.
    C.H. Brans, J. Math. Phys. 6, 94 (1965).Google Scholar
  13. 13.
    I. Frick 'sHEEP Users guide', Institute of Physics, University of Stockholm report 77-14 (1977).Google Scholar
  14. 14.
    I. Frick, ‘The Computer Algebra System SHEEP, what it can and cannot do in General Relativity'. Inst. of Theoretical Physics, University of Stockholm report 77-15 (1977).Google Scholar
  15. 15.
    R.A. d'Inverno and I. Frick, Gen. Rel. and Grav. 14 (1982) 835.Google Scholar
  16. 16.
    R. Penrose and W. Rindler, 'spinors and space-time vol.1: Two-spinor calculus and relativistic fields’ Cambridge University Press (1984).Google Scholar
  17. 17.
    A. Karlhede and M.A.H. MacCallum, Gen. Rel. and Grav. 14, 673 (1982).Google Scholar
  18. 18.
    A. Karlhede and J.E. Åman, ‘A Classification of the Vacuum D Metrics'. Preprint, University of Stockholm (1981).Google Scholar
  19. 19.
    J.E. Åman, in ‘Classical General Relativity', ed. W.B. Bonnor, J.N.Islam and M.A.H. MacCallum, Cambridge University Press, 1 (1984).Google Scholar
  20. 20.
    J.E. Åman, R.A. d'Inverno, G.C. Joly and M.A.H. Joly MacCallum in ‘Eurosam’ 84, ed. J. Fitch, Springer Lecture notes in Computer Science 174, (1984) 47.Google Scholar
  21. 21.
    R. Penrose, Ann. Phys. 10 (1960) 171.Google Scholar
  22. 22.
    J.E. Åman and M.A.H. MacCallum, ‘On the minimal set of derivatives required for the equivalence problem', paper in preparation.Google Scholar
  23. 23.
    W. Kundt, in ‘Recent Developments in General Relativity’ PWN, Warsaw (1962).Google Scholar
  24. 24.
    M. Bradley, ‘Finding Perfect Fluid Solutions to Einstein's Equations without using a metric', paper in preparation, Institute of Theoretical Physics, University of Stockholm (1985).Google Scholar
  25. 25.
    D. Kramer, H. Stephani, M.A.H. MacCallum and E. Herlt, ‘Exact Solutions of Einstein's Field Equations', VEB Deutscher Verlag der Wissenschaften, Berlin, and Cambridge University Press (1980). [Russian edn. Energoisdat, Moscow, 1982.]Google Scholar
  26. 26.
    M.A.H. MacCallum, 10th International Conference on General Relativity and Gravitation, Abstracts of contributed papers, 301 (1983).Google Scholar
  27. 27.
    A. Karlhede, U. Lindstrom and J.E. Åman, Gen. Rel. Grav. 14 (1982) 569.Google Scholar
  28. 28.
    A. Karlhede and U. Lindstrom, Gen. Rel. Grav. 15, (1982) 597.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. E. Åman
    • 1
  • R. A. d'Inverno
    • 2
  • G. C. Joly
    • 1
  • M. A. H. MacCallum
    • 1
  1. 1.School of Mathematical SciencesQueen Mary CollegeLondonUK
  2. 2.Faculty of MathematicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations