Fast subsumption algorithms

  • G. Gottlob
  • A. Leitsch
Automated Theorem Proving
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


Subsumption algorithms are used in resolution oriented theorem proving to eliminate redundant clauses from the search space. In a recent paper, the authors have introduced a new subsumption algorithm DC (Division into Components) which is much more efficient than the standard algorithms. In the present paper two new results are stated. First, an exponential lower bound for DC is presented. It is shown, that in certain cases DC is exponential in time, while IDC is only polynomial. However we prove when DC has polynomial time complexity, then also IDC is polynomial.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Blaesius K., Eisinger J., Smolka G., Herold A., Walther C.: The Markgraf Carl Refutation Procedure; Proc. IJCAI — 1981, Vancouver, 1981, pp 511–517.Google Scholar
  2. (2).
    Wos L.A.: Automated Reasoning: Real Uses and Potential Uses; Proc. IJCAI — 1983, Karlsruhe, 1983, vol.2, pp 867–876.Google Scholar
  3. (3).
    Garey M.R., Johnson D.S.: Computers and Intractability; Freeman & Comp., San Francisco, 1979.Google Scholar
  4. (4).
    Chang C.L., Lee R.C.T.: Symbolic Logic and Mechanical Theorem Proving; Academic Press, New York, 1973.Google Scholar
  5. (5).
    Stillman R.B.: The Concept of Weak Substitution in Theorem Proving; J.ACM 20 No 4, pp 23–41, 1973.Google Scholar
  6. (6).
    Gottlob G., Leitsch A.: On the Efficiency of Subsumption Algorithms; to appear in J.ACM, Vol.32,No.2, April 1985.Google Scholar
  7. (7).
    Loveland D.: Automated Theorem Proving: A Logical Basis; North Holland Publ. Comp., Amsterdam, 1978.Google Scholar
  8. (8).
    Paterson M.S., Wegman M.L.: Linear Unification; Journal of Comp. and Syst. Sciences, vol.16, No 2, pp 158–167, 1978.Google Scholar
  9. (9).
    Aho A.V., Hopcroft J.E., Ullman J.D.: Data Structures and Algorithms; Addison-Wesley Publ. Comp., 1983.Google Scholar
  10. (10).
    Robinson J.A.: A Machine-Oriented Logic Based on the Resolution Principle; J.ACM, vol.12, No 1, pp 23–41, 1965.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • G. Gottlob
    • 1
  • A. Leitsch
    • 2
  1. 1.Istituto per la Matematica ApplicataC.N.R.GenovaItaly
  2. 2.Institut für StatistikWirtschaftsuniversität WienWien

Personalised recommendations