Towards practical implementations of syllogistic

  • S. Ghelfo
  • E. G. Omodeo
Automated Theorem Proving
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)


Decision Procedure Decision Algorithm Choice Operator Propositional Connective NASA Langley Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behmann, H.; "Beiträge zur Algebra der Logik insbesondere zum Entscheidungsproblem". Math. Annalen, 86, pp. 163–220; 1922.CrossRefGoogle Scholar
  2. 2.
    Breban M., Ferro A., Omodeo E. G., Schwartz J. T.; "Decision procedures for elementary sublanguages of Set Theory. II. Formulas involving restricted quantifiers, together with ordinal, integer, map, and domain notions". Comm. Pure App. Math., 34; pp. 177–195; 1981.Google Scholar
  3. 3.
    Breban M., Ferro A.; "Decision procedures for elementary sublanguages of Set Theory. III. Restricted classes of formulas involving the powerset operator and the general set union operator". To appear in: Advances in Applied MathematicsGoogle Scholar
  4. 4.
    Cantone D., Ferro A., Schwartz J.T.; private communications.Google Scholar
  5. 5.
    Ferro A., Omodeo E. G., Schwartz J. T.; "Decision procedures for elementary sublanguages of Set Theory. I. Multi-level syllogistic and some extensions". Comm. Pure App. Math., 33; pp. 599–608; 1980.Google Scholar
  6. 6.
    Ferro A., Omodeo E. G., Schwartz J. T.; "Decision procedures for some fragments of Set Theory". Proceedings of the 5th conference on Automated Deduction, pp. 88–96. Springer-Verlag, 1980.Google Scholar
  7. 7.
    Ferro A., Omodeo E. G.; "An efficient validity test for formulae in extensional two-level syllogistic". Le Matematiche (Catania, Italy), 33; pp. 130–137; 1978.Google Scholar
  8. 8.
    Gogol, Daniel; "The ∀n∃-completeness of Zermelo-Fraenkel Set Theory". Zeitschr. f. math. Logik und Grundlagen d. Math.; 1978.Google Scholar
  9. 9.
    Gogol, Daniel; "Sentences with three quantifiers are decidable in Set Theory". Fundamenta Mathematicae CII; 1979.Google Scholar
  10. 10.
    Lukasiewicz, J.; "Aristotle's syllogistic". Clarendon Press, Oxford; 1952.Google Scholar
  11. 11.
    Mostowski, A.; Constructible Sets with Applications. North Holland; 1969.Google Scholar
  12. 12.
    Omodeo E.G.; "Decidability and Proof Procedures for Set Theory with a Choice Operator". Ph. D. Thesis, New York University.Google Scholar
  13. 13.
    Pastre, Dominique; "Automatic Theorem Proving in Set Theory". Artificial Intelligence, 10; North-Holland; 1978.Google Scholar
  14. 14.
    Quine, W. V. O.; "Methods of Logic". Henry & Co.; New York; 1959.Google Scholar
  15. 15.
    Schwartz J. T.; "Instantiation and decision procedures for certain classes of quantified set-theoretic formulae". Inst. for Computer Applications in Science and Engr.; NASA Langley Research Center, Hampton, Viginia, Rept. No. 78-10; 1978.Google Scholar
  16. 16.
    Shepherdson, J. C.; "On the interpretation of Aristotelian syllogistic". J. Symb. Logic, 21; pp. 137–147; 1956.Google Scholar
  17. 17.
    Ville, Françoise; "Décidabilité des formules existentielles en théorie des ensembles". C. R. Acad. Sc.; Paris t.272, Serie A, pp.513–516; 1971.Google Scholar
  18. 18.
    Aho A.V., Hopcroft J.E., Ullman J.D.; The design and analysis of computer algorithms. Addison-Wesley, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • S. Ghelfo
    • 1
  • E. G. Omodeo
    • 1
  1. 1.ENIDATA S.p.A.Divisione Prodotti TEMABolognaItaly

Personalised recommendations