Advertisement

Heugcd: How elementary upperbounds generate cheaper data

  • James Davenport
  • Julian Padget
Algebraic Algorithms I
Part of the Lecture Notes in Computer Science book series (LNCS, volume 204)

Keywords

Evaluation Point Great Common Divisor Congruence Class Springer Lecture Note Fundamental Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11-References

  1. [Cauchy, 1829]
    Cauchy, M.A., 1829 Exercies de Mathématiques, Quatrième Année. Les Oeuvres Compiètes d'Augustin Cauchy. IIe Série, Tome IX. (Bibliothèque Nationale, Paris), pp. 122–123.Google Scholar
  2. [Char et al., 1983]
    Char,B.W., Geddes,K.O., Gentleman,W.M., and Gonnet,G.H., The Design of MAPLE: a Compact, Portable and Powerful Computer Algebra System. Proc. EUROCAL 83 (Springer Lecture Notes in Computer Science 162), pp. 101–115.Google Scholar
  3. [Char et al., 1984a]
    Char, B. W., Fee, G. J., Geddes, K. O., Gonnet, G. H., Monagan, M. B., and Watt, S. W., On the Design and Performance of the MAPLE System. University of Waterloo, Research Report CS-84-13, June 1984Google Scholar
  4. [Char et al., 1984b]
    Char, B. W., Geddes, K. O. & Gonnet, G. H., GCDHEU: Heuristic Polynomial GCD Algorithm Based on Integer GCD Computation. Proc. EUROSAM 84 (Springer Lecture Notes in Computer Science 174) pp. 285–296.Google Scholar
  5. [Davenport, 1981]
    Davenport, J. H., On the Integration of Algebraic Functions. Springer Lecture Notes in Computer Science 102, 1981.Google Scholar
  6. [Fitch & Norman, 1977]
    Fitch, J. P. & Norman, A. C., Implementing LISP in a High-Level Language. Software — Practice & Expreience 7(1977) pp. 713–725.Google Scholar
  7. [Hearn, 79]
    Hearn, A. C., Non-Modular Computation of Polynomial Gcd Using Trial Division. Proc EUROSAM 79 (Springer Lecture Notes in Computer Science 72), pp. 227–239.Google Scholar
  8. [Hearn, 82]
    Hearn, A. C., REDUCE — A Case Study in Algebra System Development. Proc EUROCAM 82 (Springer Lecture Notes in Computer Science 144), pp. 263–272.Google Scholar
  9. [Landau, 1905]
    Landau, E., Sur queiques théorèmes de M. Petrovic rélatifs aux zeros des fonctions analytiques. Bull. Math. Soc. France 33(1905) pp. 251–261.Google Scholar
  10. [Mignotte, 1974]
    Mignotte, M., An Inequallty About Factors of Polynomials. Math. Comp. 28(1974) pp. 1153–1157.Google Scholar
  11. [Mignotte, 1982]
    Mignotte, M., Some Useful Bounds. Symbolic & Algebraic Computation (Computing Supplementum 4), Springer-Verlag 1982, pp. 259–263.Google Scholar
  12. [Moore & Norman, 1981]
    Moore, P. M. A. & Norman, A. C., Implementing a Polynomial Factorization and GCD Package. Proc. SYMSAC 81, ACM, New York, 1981, pp. 109–116.Google Scholar
  13. [Padget & Davenport, 1985]
    Padget, J. A. & Davenport, J. H., Number Bases in an Algebra System. To appear in SIGSAM Bulletin.Google Scholar
  14. [Stoutemyer, 1984]
    Stoutemyer, D. R., Which Polynomial Representation is Best: Surprises Abound. Proc. 1984 MACSYMA Users' Conference. General Electric. Schenectady, 1984, pp. 221–243.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • James Davenport
    • 1
  • Julian Padget
    • 1
  1. 1.School of MathematicsUniversity of BathBath. AvonEngland

Personalised recommendations