Algebraic and symbolic computation in digital signal processing, coding and cryptography

  • Thomas Beth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 203)


Cyclic Code Pointer Algebra Algebraic Code Theory Royal Holloway College Fast Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beth: Verfahren der Schnellen Fourier Transformation, Teubner 1984Google Scholar
  2. [2]
    Lüneburg: Galoisfelder. Kreisteilungskorper und Schieberegisterfolgen B.I. 1979Google Scholar
  3. [3]
    Golomb: Shift Register Sequences, Holden-Day 1976.Google Scholar
  4. [4]
    Beth/Hess/Wirl: Kryptographie, Teubner 1983.Google Scholar
  5. [5]
    Beker/Piper: Cipher Systems, Northwood 1982.Google Scholar
  6. [6]
    Nussbaumer: The Fast Fourier Transform and Convolution Algorithms. Springer 1981.Google Scholar
  7. [7]
    Blahut: Theory and Practice of Error-Control Codes, Addison-Wesley 1983.Google Scholar
  8. [8]
    Serre: Linear Representatives of Finite Groups. Springer 1977.Google Scholar
  9. [9]
    Schonhage/Strassen: Schnelle Multiplikation grosser Zahlen, Computing 7, 281–292, 1971.Google Scholar
  10. [10]
    Aho/Hopcroft/Ullman: The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.Google Scholar
  11. [11]
    Winograd: Arithmetic Complexity of Computations, SIAM 1982.Google Scholar
  12. [12]
    Plesken: Private communication with the author, 1984.Google Scholar
  13. [13]
    Berlekamp: Algebraic Coding Theory, McGraw-Hill 1968.Google Scholar
  14. [14]
    Lipson: Elements of Algebra and Algebraic Computing, Addison-Wesley 1981.Google Scholar
  15. [15]
    Rader: Discrete Fourier Transform when the number of data points is prime, Proc. IEEE 56, 1107–1108, 1968.Google Scholar
  16. [16]
    Rivest/Shamir/Adleman: A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21, 120–126 (1978).CrossRefGoogle Scholar
  17. [17]
    Diffie/Hellman: New Directions in Cryptography, IEEE Transactions Information Theory II-22, 644–654 1976.CrossRefGoogle Scholar
  18. [18]
    Knuth: Seminumerical Algorithms, Addison-Wesley 1969.Google Scholar
  19. [19]
    Beth/Fumy/Mühlfeld: Zur algebraischen diskreten Fourier-Transformation, Arch. Math. 40, 238–244; 1983.CrossRefGoogle Scholar
  20. [20]
    Berlekamp: Bit — Serial Reed-Solomon Encoders, preprint, Cyclotomics Inc. 1983Google Scholar
  21. [21]
    Massey: A New Multiplication Method for GF(2m) and Its Applications in Public Key Cryptography, EUROCRYPT '83, Udine, 1983.Google Scholar
  22. [22]
    Fumy: Manuscript, Erlangen, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Thomas Beth
    • 1
  1. 1.Department of Statistics and Computer Science Royal Holloway CollegeUniversity of LondonEngland

Personalised recommendations