Constructions: A higher order proof system for mechanizing mathematics

  • Thierry Coquand
  • Gérard Huet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 203)


We present an extensive set of mathematical propositions and proofs in order to demonstrate the power of expression of the theory of constructions.


Type Theory Abstract Syntax Natural Deduction Combinatory Logic Concrete Syntax 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. B. Andrews, Resolution in Type Theory, Journal of Symbolic Logic 36,3 pp. 414–432 (1971).Google Scholar
  2. 2.
    P. B. Andrews, Dale A. Miller, Eve Longini Cohen, and Frank Pfenning, Automating higher-order logic, Dept of Math. University Carnegie-Mellon (1983 January).Google Scholar
  3. 3.
    R. Backhouse, Algorithm development in Martin-Löf's type theory, University of Essex (July 1984).Google Scholar
  4. 4.
    A. Berarducci and C. Böhm, Toward an Automatic Synthesis of Polymorphic Typed Lambda Terms, ICALP (1984).Google Scholar
  5. 5.
    E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New-York (1967).Google Scholar
  6. 6.
    E. Bishop, Mathematics as a numerical language, Intuitionism and Proof Theory, Edited by J. Myhill, A. Kino and R.E. Vesley, North-Holland, Amsterdam, pp. 53–71 (1970).Google Scholar
  7. 7.
    R. Boyer and J Moore, A Lemma Driven Automatic Theorem Prover for Recursive Function Theory, 5th International Joint Conference on Artificial Intelligence, pp. 511–519 (1977).Google Scholar
  8. 8.
    R. Boyer and J. Moore, A mechanical proof of the unsolvability of the halting problem, Report ICSCA-CMP-28, Institute for Computing Science — University of Texas at Austin (July 1982).Google Scholar
  9. 9.
    R. Boyer and J. Moore, Proof Checking the RSA Public Key Encryption Algorithm, Report ICSCA-CMP-33, Institute for Computing Science — University of Texas at Austin (September 1982).Google Scholar
  10. 10.
    R. Boyer and J. Moore, Proof checking theorem proving and program verification, Report ICSA-CMP-35, Institute for Computing Science — University of Texas at Austin (January 1983).Google Scholar
  11. 11.
    N.G. de Bruijn, Automath a language for mathematics, Les Presses de l'Universite de Montréal (1973).Google Scholar
  12. 12.
    N.G. de Bruijn, A survey of the project Automath, Curry Volume, Academic Press (1980).Google Scholar
  13. 13.
    A. Church, The Calculi of Lambda-Conversion, Princeton U. Press, Princeton N.J. (1941).Google Scholar
  14. 14.
    R.L. Constable and J.L. Bates, Proofs as Programs, Dept. of Computer Science, Cornell University. (Feb. 1983).Google Scholar
  15. 15.
    R.L. Constable and J.L. Bates, The Nearly Ultimate Pearl, Dept. of Computer Science, Cornell University. (Dec. 1983).Google Scholar
  16. 16.
    Th. Coquand, Une théorie des constructions, Thèse de troisième cycle, Université Paris VII (Janvier 85).Google Scholar
  17. 17.
    Th. Coquand and G. Huet, A Theory of Constructions, Preliminary version, presented at the International Symposium on Semantics of Data Types, Sophia-Antipolis (June 84).Google Scholar
  18. 18.
    D. Van Daalen, The language of Automath, Ph. D. Dissertation, Technological Univ. Eindhoven (1980).Google Scholar
  19. 19.
    S. Fortune, D. Leivant, and O'Michael Donnell, The Expressiveness of Simple and Second-Order Type Structures, Journal of the Association for Computing Machinery, Vol 30, No 1, pp 151–185 (January 1983).Google Scholar
  20. 20.
    G. Frege, Begriffschrift, in Heijenoort, From Frege to Gödel (1879).Google Scholar
  21. 21.
    G. Gentzen, The Collected Paper of Gerhard Gentzen, edited by E. Szabo, North-Holland, Amsterdam, 1969 (1969).Google Scholar
  22. 22.
    J.Y. Girard, Une extension de l'interprétation de Gödel à l'analyse, et son application a l'élimination des coupures dans l'analyse et la théorie des types, Proceedings of the Second Scandinavian Logic Symposium, Ed. J.E. Fenstad, North Holland, pp. 63–92 (1970).Google Scholar
  23. 23.
    J.Y. Girard, Interprétation fonctionnelle et élimination des coupures dans l'arithmétique d'ordre supérieure, Thèse d'Etat, Université Paris VII (1972).Google Scholar
  24. 24.
    M. Gordon, R. Milner, and C. Wadsworth, A Metalanguage for Interactive Proof in LCF, Internal Report CSR-16-77, department of Computer Science, University of Edinburgh (Sept. 1977).Google Scholar
  25. 25.
    M.J. Gordon, A. J. Milner, and C.P. Wadsworth, Edinburgh LCF, Springer-Verlag LNCS 78 (1979).Google Scholar
  26. 26.
    G. Huet, Constrained Resolution: a Complete Method for Type Theory, Ph.D. Thesis, Jennings Computing Center Report 1117, Case Western Reserve University (1972).Google Scholar
  27. 27.
    G. Huet, A Mechanization of Type Theory. Proceedings, 3rd IJCAI, Stanford (Aug. 1973).Google Scholar
  28. 28.
    G. Huet, A Unification Algorithm for Typed Lambda Calculus, Theoretical Computer Science, 1.1, pp. 27–57 (1975).Google Scholar
  29. 29.
    G. Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems, J. Assoc. Comp. Mach. 27,4 pp. 797–821 (Oct. 1980).Google Scholar
  30. 30.
    L.S. Jutting, A translation of Landau's "Grundlagen" in AUTOMATH, Eindhoven University of Technology, Dept of Mathematics (October 1976).Google Scholar
  31. 31.
    J. Ketonen, A mechanical proof of Ramsey theorem, Stanford Univ. CA (October 1983).Google Scholar
  32. 32.
    J. Ketonen, EKL-A Mathematically Oriented Proof Checker, 7th International Conference on Automated Deduction, Napa, California. LNCS 170, Springer-Verlag (May 1984).Google Scholar
  33. 33.
    J. Ketonen and J. S. Weening, The language of an interactive proof checker, Stanford University (1984).Google Scholar
  34. 34.
    D. Leivant, Polymorphic type inference, 10th POPL (1983).Google Scholar
  35. 35.
    P. Martin-Löf, A theory of types. October 1971.Google Scholar
  36. 36.
    P. Martin-Löf, About models for intuitionistic type theories and the notion of definitional equality, Paper read at the Orléans Logic Conference (1972).Google Scholar
  37. 37.
    P. Martin-Löf, An intuitionistic Theory of Types, predicative part, Logic Colloquium 73, pp. 73–118, North-Holland (1974).Google Scholar
  38. 38.
    P. Martin-Löf, Constructive Mathematics and Computer Programming, Logic, Methodology and Philosophy of Science VI, pp. 153–175, North-Holland (1980).Google Scholar
  39. 39.
    P. Martin-Löf, Intuitionistic Type Theory, Studies in Proof Theory, Bibliopolis (1984).Google Scholar
  40. 40.
    D.A. Miller, Proofs in Higher-order Logic, Ph. D. Dissertation, Carnegie-Mellon University (Aug. 1983).Google Scholar
  41. 41.
    R.P. Nederpelt, Strong normalization in a typed lambda calculus with lambda structured types, Ph. D. Thesis, Eindhoven University of Technology (1973).Google Scholar
  42. 42.
    R.P. Nederpelt, An approach to theorem proving on the basis of a typed lambda-calculus, Lecture Notes in Computer Science 87: 5th Conference on Automated Deduction, Les Arcs, France, Springer-Verlag (1980).Google Scholar
  43. 43.
    M.H.A. Newman, On Theories with a Combinatorial Definition of "Equivalence", Annals of Math. 43,2 pp.223–243 (1942).Google Scholar
  44. 44.
    B. Nordström, Programming in Constructive Set Theory: Some Examples, Proceedings of the Conference on Functional Programming Languages and Computer Architecture, Portmouth, New Hampshire, p. 141–154 (Oct. 1981).Google Scholar
  45. 45.
    L. Paulson, Recent Developments in LCF: Examples of structural induction, Technical Report No 34, University of Cambridge, England (Janvier 1983).Google Scholar
  46. 46.
    L. Paulson, Tactics and Tacticals in Cambridge LCF, Technical Report No 39, Computer Laboratory, University of Cambridge (July 1983).Google Scholar
  47. 47.
    L. Paulson, Verifying the unification algorithm in LCF, Technical report No 50, Computer Laboratory, University of Cambridge (March 1984).Google Scholar
  48. 48.
    T Pietrzykowski and D.C Jensen, A complete mechanization of ω-order type theory, Proceedings of The ACM Annual Conference (1972).Google Scholar
  49. 49.
    T. Pietrzykowski, A Complete Mechanization of Second-Order Type Theory, JACM 20, pp. 333–364 (1973).CrossRefGoogle Scholar
  50. 50.
    D. Prawitz, Natural Deduction, Almqist and Wiskell, Stockolm (1965).Google Scholar
  51. 51.
    J.C. Reynolds, Towards a Theory of Type Structure, Programming Symposium, Paris. Springer Verlag LNCS 19, pp. 408–425 (Apr. 1974).Google Scholar
  52. 52.
    J. C. Reynolds, Types, abstraction. and parametric polymorphism, IFIP Congress'83, Paris (September 1983).Google Scholar
  53. 53.
    J. C. Reynolds, Polymorphism is not set-theoretic, International Symposium on Semantics of Data Types, Sophia-Antipolis (June 1984).Google Scholar
  54. 54.
    D. Scott, Constructive validity, Symposium on Automatic Demonstration, Lecture Notes in Mathematics, vol. 125 (1970).Google Scholar
  55. 55.
    J. Smith, Course-of-values recursion on lists in intuitionistic type theory, Göteborg (September 1981).Google Scholar
  56. 56.
    J. Smith, The identification of propositions and types in Martin-Lof's type theory: a programming example, University of Goteborg Sweden (November 1982).Google Scholar
  57. 57.
    A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 12,2/3, pp. 242–248 (1955).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Thierry Coquand
    • 1
  • Gérard Huet
    • 1
  1. 1.INRIADomaine de VoluceauRocquencourtFrance

Personalised recommendations