Proof theory and the synthesis of programs: Potential and limitations

  • G. Kreisel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 203)


Normal Form Intuitionistic Logic Proof Theory Formal Principle Logical Tradition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BV]
    E. Bombieri and T. Vaalen, On Siegel's Lemma. Inventiones 73 (1983) 11–32.CrossRefGoogle Scholar
  2. [DT]
    D. van Dalen and A. S. Troelstra (eds.), Proc. Brouwer Centenary Conference. North-Holland 1982.Google Scholar
  3. [Gi]
    T.-Y. Girard, II21-logic. I. Annals of Mathematical Logic 21 (1981) 75–219.CrossRefGoogle Scholar
  4. [G]
    C.A. Goad, Computational Uses of the Manipulation of Formal Proofs. STAN-CS-80-819, Stanford U., 1980.Google Scholar
  5. [GH]
    R. O. Gandy and T. M. Hyland (eds.), Logic Colloquium 76. North-Holland 1977.Google Scholar
  6. [K]
    G. Kreisel, Frege's Foundations and Intuitionistic Logic. The Monist 67 (1984) 72–91.Google Scholar
  7. [L]
    H. Luckhardt, ∑2-Herbrand-Analysen: polynomiale Anzahlschranken für den Satz von Roth (to appear).Google Scholar
  8. [N]
    T. Naur, Mullin's Sequence of Primes is Not Monotonic. Proc. A.M.S. 90 (1984) 43–44.Google Scholar
  9. [P]
    R. Parikh (ed.), Springer Lecture Notes in Math. 453 (1975).Google Scholar
  10. [Si]
    H. A. Simon, Computer Modelling of Scientific and Mathematical Discovery Processes. Bull. A.M.S. 11 (1984) 247–263.Google Scholar
  11. [Sm]
    S. Smale, The Fundamental Theorem of Algebra and Complexity Theory. Bull. A.M.S. 4 (1981) 1–36.Google Scholar
  12. [St]
    R. Statman, Lower Bounds on Herbrand's Theorem. Proc. A.M.S. 75 (1979) 104–107.Google Scholar
  13. [Ste]
    T. Stern (ed.), Proc. Herbrand Symposium. North-Holland, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • G. Kreisel
    • 1
  1. 1.Department of PhilosophyStanford UniversitySTANFORDUSA

Personalised recommendations