# Termination

Conference paper

First Online:

## Abstract

This survey describes methods for proving that systems of rewrite rules terminate. Illustrations of the use of path orderings and other simplification orderings in termination proofs are given. The effect of restrictions, such as linearity, on the form of rules is considered. In general, though, termination is an undecidable property of rewrite systems.

## Keywords

Termination Proof Simplification Ordering Recursive Decomposition Recursive Path Path Ordering
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- [AitKaci-83]Ait-Kaci, H. “An algorithm for finding a minimal recursive path ordering”, Report MS-CIS-83-7, Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, 1983.Google Scholar
- [Bachmair-Dershowitz-85]Bachmair, L., and Dershowitz, N. “Commutation, transformation, and termination”. (1985) (submitted).Google Scholar
- [Bachmair-Plaisted-85]Bachmair, L., and Plaisted, D. A. “Associative path ordering”.
*Proceedings of the First International Conference on Rewriting Techniques and Applications*, Dijon, France (May 1985).Google Scholar - [BenCherifa-84]Ben Cherifa, A. “Preuve de la terminaison finie d'un système de reécriture par l'ordre polynômial”, Unpublished manuscript, Centre de Recherche en Informatique de Nancy, Nancy, France, 1984.Google Scholar
- [Bergstra-Tucker-80]Bergstra, J. A., and Tucker, J. V. “Equational specifications for computable data types: Six hidden functions suffice and other sufficiency bounds”, Preprint IW 128/80, Mathematisch Centrum, Amsterdam, The Netherlands, January 1980.Google Scholar
- [Bidoit-]Bidoit, M. “Thesis”, Thèse.Google Scholar
- [Bucher, et al.-84][Bucher,
*et al.*-84] Bucher, W., Ehrenfeucht, A., and Haussler, D. “On total regulators generated by derivation relations”, University of Denver, 1984.Google Scholar - [Calladine-85]Calladine, P. “Personal communication”, Laboratoire d'Informatique, Université de Poitiers, May 1985.Google Scholar
- [Choque-83]Choque, G. “Calcul d'un ensemble complet d'incrementations minimales pour l'ordre recursif de decomposition”, Technical report, Centre de Recherche en Informatique de Nancy, Nancy, France, 1983.Google Scholar
- [Cohen-69]Cohen, P. J. “Decision procedures for real and
*p*-adic fields”.*Communications of Pure and Applied Mathematics*, Vol. 22, No. 2 (1969), pp. 131–151.Google Scholar - [Collins-75]Collins, G. “Quantifier elimination for real closed fields by cylindrical algebraic decomposition”.
*Proceedings Second GI Conference on Automata Theory and Formal Languages*(1975), pp. 134–183.Google Scholar - [Dauchet-Tison-84]Dauchet, M., and Tison, S. “Decidability of confluence for ground term rewriting systems”, Unpublished report, Université de Lille I, Lille, France, 1984.Google Scholar
- [Dershowitz, et al.-83][Dershowitz,
*et al.*-83] Dershowitz, N., Hsiang, J., Josephson, N. A., and Plaisted, D. A. “Associative-commutative rewriting”.*Proceedings of the Eighth International Joint Conference on Artificial Intelligence*, Karlsruhe, West Germany (August 1983), pp. 940–944.Google Scholar - [Dershowitz-79]Dershowitz, N. “A note on simplification orderings”.
*Information Processing Letters*, Vol. 9, No. 5 (November 1979), pp. 212–215.Google Scholar - [Dershowitz-80]Dershowitz, N. “On representing ordinals up to Λ
_{0}”, Unpublished note, Department Computer Science, University of Illinois, Urbana, IL, June 1980.Google Scholar - [Dershowitz-81]Dershowitz, N. “Termination of linear rewriting systems”.
*Proceedings of the Eighth EATCS International Colloquium on Automata, Languages and Programming*, Vol. 115, Acre, Israel (July 1981), pp. 448–458.Google Scholar - [Dershowitz-82]Dershowitz, N. “Orderings for term-rewriting systems”.
*J. Theoretical Computer Science*, Vol. 17, No. 3 (March 1982), pp. 279–301 (previous version appeared in Proceedings of the Symposium on Foundations of Computer Science, San Juan, PR, pp. 123–131 [October 1979]).Google Scholar - [Dershowitz-83]Dershowitz, N. “Well-founded orderings”, Technical Report ATR-83(8478)-3, Information Sciences Research Office, The Aerospace Corporation, El Segundo, CA, May 1983.Google Scholar
- [Dershowitz-Manna-79]Dershowitz, N., and Manna, Z. “Proving termination with multiset orderings”.
*Communications of the ACM*, Vol. 22, No. 8 (August 1979), pp. 465–476 (also in Proceedings of the International Colloquium on Automata. Languages and Programming, Graz, 188–202 [July 1979]).Google Scholar - [Dershowitz-Zaks-81]Dershowitz, N., and Zaks, S. “Applied tree enumerations”.
*Proceedings of the Sixth Colloquium on Trees in Algebra and Programming*, Vol. 112, Genoa, Italy (March 1981), pp. 180–193.Google Scholar - [Detlefs-Forgaard-85]Detlefs, D., and Forgaard, R. “A procedure for automatically proving the termination of a set of rewrite rules”.
*Proceedings of the First International Conference on Rewriting Techniques and Applications*, Dijon, France (May 1985).Google Scholar - [Ehrenfeucht, et al.-83][Ehrenfeucht,
*et al.*-83] Ehrenfeucht, A., Haussler, D., and Rozenberg, G. “On regularity of context-free languages”.*Theoretical Computer Science*, Vol. 27 (1983), pp. 311–32.Google Scholar - [Feferman-68]Feferman, S. “Systems of predicative analysis II: Representation of ordinals”.
*J. Symbolic Logic*, Vol. 33 (1968), pp. 193–220.Google Scholar - [Filman-78]Filman, R. E. “personal communication”, 1978.Google Scholar
- [Forgaard-84]Forgaard, R. “A program for generating and analyzing term rewriting systems”, Master's thesis, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, September 1984.Google Scholar
- [Gardner-83]Gardner, M. “Mathematical games: Tasks you cannot help finishing no matter how hard you try to block finishing them”.
*Scientific American*, Vol. 24, No. 2 (August 1983), pp. 12–21.Google Scholar - [Gentzen-38]Gentzen, G. “New version of the consistency proof for elementary number theory”. In:
*Collected Papers of Gerhard Gentzen*, M. E. Szabo, ed (1938). North-Holland, 1969, pp. 252–286 (1938).Google Scholar - [Gnaedig-85]Gnaedig, I. “personal communication”, 1985.Google Scholar
- [Gorn-67]Gorn, S. “Handling the growth by definition of mechanical languages”.
*Proceedings of the Spring Joint Computer Conference*(Spring 1967), pp. 213–224.Google Scholar - [Gorn-73]Gorn, S. “On the conclusive validation of symbol manipulation processes (How do you know it has to work?)”.
*J. of the Franklin Institute*, Vol. 296, No. 6 (December 1973), pp. 499–518.Google Scholar - [Guttag, etal.-83][Guttag,
*etal.*-83] Guttag, J. V., Kapur, D., and Musser, D. R. “On proving uniform termination and restricted termination of rewriting systems”.*SIAM Computing*, Vol. 12, No. 1 (February 1983), pp. 189–214.Google Scholar - [Higman-52]Higman, G. “Ordering by divisibility in abstract algebras”.
*Proceedings of the London Mathematical Society (3)*, Vol. 2, No. 7 (September 1952), pp. 326–336.Google Scholar - [Huet-80]Huet, G. “Confluent reductions: Abstract properties and applications to term rewriting systems”.
*J. of the Association for Computing Machinery*, Vol. 27, No. 4 (1980), pp. 797–821 (previous version in Proceedings of the Symposium on Foundations of Computer Science, Providence, RI, pp. 30–45 [1977]).Google Scholar - [Huet-Lankford-78]Huet, G., and Lankford, D. S. “On the uniform halting problem for term rewriting systems”, Rapport Laboria 283, IRIA, March 1978.Google Scholar
- [Huet-Levy-79]Huet, G., and Levy, J. J. “Call by need computations in non-ambiguous linear term rewriting systems”, Rapport laboria 359, INRIA, Le Chesnay, France, August 1979.Google Scholar
- [Huet-Oppen-80]Huet, G., and Oppen, D. C. “Equations and rewrite rules: A survey”. In:
*Formal Language Theory: Perspectives and Open Problems*, R. Book, ed. Academic Press, New York, 1980, pp. 349–405.Google Scholar - [Hullot-80]Hullot, J. M. “Canonical forms and unification”.
*Proceedings of the Fifth Conference on Automated Deduction*, Les Arcs, France (July 1980), pp. 318–334.Google Scholar - [Iturriaga-67]Iturriaga, R. “Contributions to mechanical mathematics”, Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1967.Google Scholar
- [Jouannaud, etal.-82][Jouannaud,
*etal.*-82] Jouannaud, J. P., Lescanne, P., and Reinig, F. “Recursive decomposition ordering”.*Proceedings of the Second IFIP Workshop on Formal Description of Programming Concepts*, Garmisch-Partenkirchen, West Germany (June 1982), pp. 331–348.Google Scholar - [Jouannaud-Kirchner-82]Jouannaud, J. P., and Kirchner, H. “Construction d'un plus petit order de simplification”, Unpublished note, Centre de Recherche en Informatique de Nancy, Nancy, France, 1982.Google Scholar
- [Jouannaud-Munoz-84]Jouannaud, J. P., and Muñoz, M. “Termination of a set of rules modulo a set of equations”.
*Proceedings of the Seventh International Conference on Automated Deduction*, Napa, CA (May 1984), pp. 175–193.Google Scholar - [Kamin-Levy-80]Kamin, S., and Levy, J. J. “Two generalizations of the recursive path ordering”, Unpublished note, Department of Computer Science, University of Illinois, Urbana, IL, February 1980.Google Scholar
- [Kapur, etal.-85][Kapur,
*etal.*-85] Kapur, D., Narendran, P., and Sivakumar, G. “A path ordering for proving termination of term rewriting systems”.*Proceedings of the Tenth Colloquium on Trees in Algebra and Programming*(1985).Google Scholar - [Kapur-Sivakumar-83]Kapur, D., and Sivakumar, G. “Experiments with and architecture of RRL, a rewrite rule laboratory”.
*Proceedings of an NSF Workshop on the Rewrite Rule Laboratory*, Schenectady, NY (September 1983), pp. 33–56 (available as Report 84GEN008, General Electric Research and Development [April 1984]).Google Scholar - [Kirby-Paris-82]Kirby, L., and Paris, J. “Accessible independence results for Peano arithmetic”.
*Bulletin London Mathematical Society*, Vol. 14 (1982), pp. 285–293.Google Scholar - [Knuth-73]Knuth, D. E.
*Fundamental algorithms*. Addison-Wesley, Reading, MA, 1973 (second edition).Google Scholar - [Knuth-Bendix-70]Knuth, D. E., and Bendix, P. B. “Simple word problems in universal algebras”. In:
*Computational Problems in Abstract Algebra*, J. Leech, ed. Pergamon Press, 1970, pp. 263–297.Google Scholar - [Krishnamoorthy-Narendran-84]Krishnamoorthy, M. S., and Narendran, P. “A note on recursive path ordering”, Unpublished note, General Electric Corporate Research and Development, Schenectady, NY, 1984.Google Scholar
- [Kruskal-60]Kruskal, J. B. “Well-quasi-ordering, the Tree Theorem, and Vazsonyi's conjecture”.
*Transactions of the American Mathematical Society*, Vol. 95 (May 1960), pp. 210–225.Google Scholar - [Kruskal-72]Kruskal, J. B. “The theory of well-quasi-ordering: A frequently discovered concept”.
*J. Combinatorial Theory Ser. A*, Vol. 13 (1972), pp. 297–305.Google Scholar - [Lankford-75]Lankford, D. S. “Canonical algebraic simplification in computational logic”, Memo ATP-25, Automatic Theorem Proving Project, University of Texas, Austin, TX, May 1975.Google Scholar
- [Lankford-79]Lankford, D. S. “On proving term rewriting systems are Noetherian”, Memo MTP-3, Mathematics Department, Louisiana Tech. University, Ruston, LA, May 1979.Google Scholar
- [Lankford-Musser-78]Lankford, D. S., and Musser, D. R. “A finite termination criterion”, Unpublished draft, 1981.Google Scholar
- [Laver-78]Laver, R. “Better-quasi-orderings and a class of trees”.
*Studies in Foundations and Combinatorics*(1978), pp. 31–48.Google Scholar - [Lescanne-81]Lescanne, P. “Two implementations of the recursive path ordering on monadic terms”.
*Proceedings of the Nineteenth Allerton Conference on Communication, Control, and Computing*, Monticello, IL (September 1981), pp. 634–643.Google Scholar - [Lescanne-83]Lescanne, P. “Computer experiments with the REVE term rewriting system generator”.
*Proceedings of the Tenth Symposium on Principles of Programming Languages*, Austin, TX (January 1983), pp. 99–108.Google Scholar - [Lescanne-84]Lescanne, P. “Some properties of decomposition ordering, A simplification ordering to prove termination of rewriting systems”.
*RAIRO Theoretical Informatics*, Vol. 16, No. 4, pp. 331–347.Google Scholar - [Lescanne-84]Lescanne, P. “Uniform termination of term-rewriting systems with status”.
*Proceedings of the Ninth Colloquium on Trees in Algebra and Programming*, Bordeaux, France (March 1984).Google Scholar - [Lescanne-Jouannaud-82]Lescanne, P., and Jouannaud, J. P. “On multiset orderings”.
*Information Processing Lett.*, Vol. 15, No. 2 (September 1982), pp. 57–62.Google Scholar - [Lescanne-Steyaert-83]Lescanne, P., and Steyaert, J. M. “On the study of data structures: Binary tournaments with repeated keys”.
*Proceedings of the Tenth EATCS International Colloquium on Automata, Languages and Programming*, Barcelona, Spain (July 1983), pp. 466–475.Google Scholar - [Levy-80]Levy, J. J. “Problem 80-5”.
*J. of Algorithms*, Vol. 1, No. 1 (March 1980), pp. 108–109.Google Scholar - [Lipton-Snyder-77]Lipton, R., and Snyder, L. “On the halting of tree replacement systems”.
*Proceedings of the Conference on Theoretical Computer Science*, Waterloo, Canada (August 1977), pp. 43–46.Google Scholar - [Manna-69]Manna, Z. “Termination of algorithms”, Ph.D. thesis, Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, April 1969.Google Scholar
- [Manna-74]Manna, Z.
*Mathematical Theory of Computation*. McGraw-Hill, New York, 1974.Google Scholar - [Manna-Ness-70]Manna, Z., and Ness, S. “On the termination of Markov algorithms”.
*Proceedings of the Third Hawaii International Conference on System Science*, Honolulu, HI (January 1970), pp. 789–792.Google Scholar - [Metivier-83]Metivier, Y. “About the rewriting systems produced by the Knuth-Bendix completion algorithm”.
*Information Processing Letters*, Vol. 16 (January 1983), pp. 31–34.Google Scholar - [Nash-Williams-63]Nash-Williams, C. S. J. A. “On well-quasi-ordering finite trees”.
*Proceedings of the Cambridge Philosophical Society*, 59 (1963), pp. 833–835.Google Scholar - [O'Donnell-77]O'Donnell, M. J. “Computing in systems described by equations”.
*Lecture Notes in Computer Science*, Vol. 58, Berlin (1977).Google Scholar - [Paulson-84]Paulson, L. C. “Constructing recursion operations in intuitionistic type theory”, Technical Report 57, Computer Laboratory, University of Cambridge, Cambridge, UK, October 1984.Google Scholar
- [Pettorossi-78]Pettorossi, A. “A property which guarantees termination in weak combinatory logic and subtree replacement systems”, Report R.78-23, Instituto di Automatica, Università di Roma, Rome, Italy, November 1978.Google Scholar
- [Pettorossi-81]Pettorossi, A. “Comparing and putting together recursive path orderings, simplification orderings and non-ascending property for termination proofs of term rewriting systems”.
*Proceedings of the Eighth International Colloquium on Automata, Languages and Programming*, Acre, Israel (July 1981), pp. 432–447.Google Scholar - [Plaisted-78]Plaisted, D. A. “Well-founded orderings for proving termination of systems of rewrite rules”, Report R78-932, Department of Computer Science, University of Illinois, Urbana, IL, July 1978.Google Scholar
- [Plaisted-78b]Plaisted, D. A. “A recursively defined ordering for proving termination of term rewriting systems”, Report R-78-943, Department of Computer Science, University of Illinois, Urbana, IL, September 1978.Google Scholar
- [Plaisted-79]Plaisted, D. A. “personal communication”, 1979.Google Scholar
- [Plaisted-83]Plaisted, D. A. “An associative path ordering”.
*Proceedings of an NSF Workshop on the Rewrite Rule Laboratory*, Schenectady, NY (September 1983), pp. 123–136 (available as Report 84GEN008, General Electric Research and Development [April 1984]).Google Scholar - [Plaisted-85]Plaisted, D. A. “The undecidability of self embedding for term rewriting systems”.
*Information Processing Lett.*, Vol. 20, No. 2 (February 1985), pp. 61–64.Google Scholar - [Porat-Francez-85]Porat, S., and Francez, N. “Fairness in term rewriting systems”.
*Proceedings of the First International Conference on Rewriting Techniques and Applications*, Dijon, France (May 1985).Google Scholar - [Puel-85]Puel, L. “personal communication”, May 1985.Google Scholar
- [Raoult-Vuillemin-80]Raoult, J. C., and Vuillemin, J. “Operational and semantic equivalence between recursive programs”.
*J. of the Association of Computing Machinery*, Vol. 27, No. 4 (October 1980), pp. 772–796.Google Scholar - [Rosen-73]Rosen, B. “Tree-manipulating systems and Church-Rosser theorems”.
*J. of the Association for Computing Machinery*, Vol. 20 (1973), pp. 160–187.Google Scholar - [Rusinowitch-85]Rusinowitch, M. “Plaisted ordering and recursive decomposition ordering revisited”.
*Proceedings of the First International Conference on Rewriting Techniques and Applications*, Dijon, France (May 1985).Google Scholar - [Sakai-84]Sakai, K. “An ordering method for term rewriting systems”.
*Proceedings of the First International Conference on Fifth Generation Computer Systems*, Tokyo, Japan (November 1984).Google Scholar - [Scherlis-80]Scherlis, W. L. “Expression procedures and program derivation”, Ph.D. Dissertation, Department Computer Science, Stanford University, Stanford, CA, August 1980.Google Scholar
- [Slagle-74]Slagle, J. R. “Automated theorem-proving for theories with simplifiers, commutativity, and associativity”.
*J. of the Association for Computing Machinery*, Vol. 21, No. 4 (1974), pp. 622–642.Google Scholar - [Smullyan-79]Smullyan, R. M. “Trees and ball games”.
*Annals of the New York Academy of Science*, Vol. 321 (1979), pp. 86–90.Google Scholar - [Tarski-51]Tarski, A.
*A Decision Method for Elementary Algebra and Geometry*. University of California Press, Berkeley, CA, 1951.Google Scholar - [Veblen-08]Veblen, O. “Continuous increasing functions of finite and transfinite ordinals”.
*Transactions of the American Mathematical Society*, Vol. 9 (1908), pp. 280–292.Google Scholar - [Weyhrauch-78]Weyhrauch, R. W. “Some notes on ordinals up to Γ
_{0}”, Informal note 13, Stanford University, Stanford, CA, March 1978.Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 1985