NARROWER: a new algorithm for unification and its application to Logic Programming

  • Pierre Rety
  • Claude Kirchner
  • Hélène Kirchner
  • Pierre Lescanne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 202)


Logic Programming Equational Theory Critical Pair Loop Equation Successful Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Dershowitz, ”Computing With Term Rewriting Systems,” Proceedings of An NSF Workshop On The Rewrite Rule Laboratory, April 1984.Google Scholar
  2. 2.
    N. Dershowitz, ”Equations as programming language,” Fourth Jerusalem Conference on Information Technology, pp. 114–123, Jerusalem (Israel), May 1984.Google Scholar
  3. 3.
    F. Fages and G. Huet, ”Unification and Matching in Equational Theories,” Proceedings of CAAP 83, vol. 159, pp. 205–220, Springer Verlag, l'Aquilla, Italy, 1983.Google Scholar
  4. 4.
    M. Fay, ”First-Order Unification in an Equational Theory,” Proceedings of the 4th Workshop on Automated Deduction, pp. 161–167, Austin, Texas, 1979.Google Scholar
  5. 5.
    J. Goguen and J. Meseguer, ”Equality, Types, Modules and Generics for Logic Programming,” SRI Internal Publication, Menlo Park, 1984.Google Scholar
  6. 6.
    J. Hsiang, ”Refutational Theorem Proving Using Term Rewriting Systems,” Ph.D. Thesis, University of Illinois, Urbana, 1981.Google Scholar
  7. 7.
    G. Huet, ”Resolution d'Equations dans des Langages d'Ordre 1,2, ... ω,” Thèse d'Etat, Université de Paris VII, 1976.Google Scholar
  8. 8.
    G. Huet and D. Oppen, ”Equations and Rewrite Rules: A Survey,” in Formal Languages: Perspectives And Open Problems, ed. Book R., Academic Press, 1980.Google Scholar
  9. 9.
    J.M. Hullot, ”Canonical Forms And Unification,” in Proceedings of the Fifth Conference on Automated Deduction, Lecture Notes in Computer Science, vol. 87, pp. 318–334, Springer Verlag, Les Arcs, France, July 1980.Google Scholar
  10. 10.
    J.M. Hullot, ”Compilation de Formes Canoniques dans les Théories Equationnelles,” Thèse de 3ème Cycle, Université de Paris Sud, 1980.Google Scholar
  11. 11.
    J. P. Jouannaud, C. Kirchner, and H. Kirchner, ”Incremental Construction of Unification Algorithms in Equational Theories,” in Proceedings of the International Conference On Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 154, pp. 361–373, Springer Verlag, Barcelona Spain, 1983.Google Scholar
  12. 12.
    C. Kirchner and H. Kirchner, ”Implementation of a General Completion Procedure Parameterized by Built-in Theories And Strategies,” Rapport Crin 84-R-85, 1984.Google Scholar
  13. 13.
    P. Lescanne, ”Computer Experiments with the REVE Term Rewriting System Generator,” in 10th ACM Conf. on Principles of Programming Languages, pp. 99–108, Austin Texas, January 1983.Google Scholar
  14. 14.
    G. Plotkin, ”Building-In Equational Theories,” Machine Intelligence, vol. 7, pp. 73–90, 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Pierre Rety
    • 1
  • Claude Kirchner
    • 1
  • Hélène Kirchner
    • 1
  • Pierre Lescanne
    • 1
  1. 1.Centre de Recherche en Informatique de NancyVandoeuvre Les Nancy CedexFrance

Personalised recommendations