Deciding algebraic properties of monoids presented by finite church-rosser Thue systems

  • Friedrich Otto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 202)


Word Problem Free Product Finite Order Congruence Class Free Monoids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Avenhaus and K. Madlener, On groups defined by monadic Thue systems, Colloquium on Algebra, Combinatorics, and Logic in Computer Science, Györ, Hungary, Sept. 1983.Google Scholar
  2. 2.
    J. Avenhaus, K. Madlener and F. Otto, Groups presented by finite two-monadic Church-Rosser Thue systems, Technical Report 110/84, Fachbereich Informatik, Universität Kaiserslautern, 1984.Google Scholar
  3. 3.
    R.V. Book, Confluent and other types of Thue systems, Journal ACM 29 (1982), 171–182.Google Scholar
  4. 4.
    R.V. Book, When is a monoid a group ? The Church-Rosser case is tractable, Theoret. Comput. Sci. 18 (1982), 325–331.Google Scholar
  5. 5.
    R.V. Book, Decidable sentences of Church-Rosser congruences, Theoret. Comput. Sci. 24 (1983), 301–312.Google Scholar
  6. 6.
    R.V. Book and C. O'Dunlaing, Thue congruences and the Church-Rosser property, Semigroup Forum 22 (1981), 325–331.Google Scholar
  7. 7.
    R.V. Book and C. O'Dunlaing, Testing for the Church-Rosser property, Theoret. Comput. Sci. 16 (1981), 223–229.Google Scholar
  8. 8.
    R.V. Book and F. Otto, Cancellation rules and extended word problems, Inf. Proc. Letters 20 (1985), 5–11.Google Scholar
  9. 9.
    Y. Cochet, Church-Rosser congruences on free semigroups, Coll. Math. Soc. Janos Bolyai: Algebraic Theory of Semigroups 20 (1976), 51–60.Google Scholar
  10. 10.
    R.H. Gilman, Computations with rational subsets of confluent groups, Proceedings of EUROSAM 1984, LNCS 174 (1984), 207–212.Google Scholar
  11. 11.
    R.H. Haring-Smith, Groups and simple languages, Transactions of the Amer. Math. Soc. 279 (1983), 337–356.Google Scholar
  12. 12.
    J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.Google Scholar
  13. 13.
    D. Kapur, M. Krishnamoorthy, R. Mc Naughton and P. Narendran, An O (|T|3) algorithm for testing the Church-Rosser property of Thue systems, Theoret. Comput. Sci. 35 (1985), 109–114.Google Scholar
  14. 14.
    G. Lallement, Semigroups and combinatorial applications, Wiley-Interscience, 1979.Google Scholar
  15. 15.
    W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, 2nd revised edition, Dover, N.Y., 1976.Google Scholar
  16. 16.
    A. Markov, Impossibility of algorithms for recognizing some properties of associative systems, Dokl. Akad. Nauk SSSR 77 (1951), 953–956.Google Scholar
  17. 17.
    A. Mostowski, Review of [16], J. Symbolic Logic 17 (1952), 151–152.Google Scholar
  18. 18.
    D.E. Muller and P.E. Schupp, Groups, the theory of ends, and context-free languages, J. Comput. Sys. Sci. 26 (1983), 295–310.Google Scholar
  19. 19.
    P. Narendran, Church-Rosser and related Thue systems, Ph.D. Dissertation, Rensselaer Polytechnic Institute, 1983. Also appears as Report No. 84 CRD 176, General Electric Corporate Research and Development, Schenectady, N.Y., 1984.Google Scholar
  20. 20.
    P. Narendran and F. Otto, Complexity results on the conjugacy problem for monoids, Theoret. Comput. Sci., 35 (1985), 227–243.Google Scholar
  21. 21.
    F. Otto, Elements of finite order for finite monadic Church-Rosser Thue systems, Transact. of the AMS, to appear.Google Scholar
  22. 22.
    F. Otto, Church-Rosser Thue systems that present free monoids, SIAM J. on Comput., to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Friedrich Otto
    • 1
  1. 1.Fachbereich InformatikUniversität KaiserslauternKaiserslauternWest Germany

Personalised recommendations