Unification problems with one-sided distributivity

  • Stefan Arnborg
  • Erik Tidén
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 202)


We show that unification in the equational theory defined by the one-sided distributivity law x × (y+z)=x×y+x×z is decidable and that unification is undecidable if the laws of associativity x+(y+z)=(x+y)+z and unit element 1×x=x× 1=x are added. Unification under one-sided distributivity with unit element is shown to be as hard as Markov's problem, whereas unification under two-sided distributivity, with or without unit element, is NP-hard. A quadratic time unification algorithm for one-sided distributivity, which may prove interesting since available universal unification procedures fail to provide a decision procedure for this theory, is outlined. The study of these problems is motivated by possible applications in circuit synthesis and by the need for gaining insight in the problem of combining theories with overlapping sets of operator symbols.


Simple System Dependency Graph Equational Theory Unification Algorithm Colored Edge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergstra, J.A. and Klop, J.W.: The Algebra of Recursively defined Processes and the Algebra of Regular Processes, ICALP 84, LNCS 172, 82–94, Springer, 1984.Google Scholar
  2. 2.
    Davis, M.: Hilberts tenth problem is unsolvable, Amer. Math. Monthly, vol 80, 1973.Google Scholar
  3. 3.
    Garey, M.R. and Johnson, D.S.: Computers and Intractability, W.H. Freeman and Company, 1979.Google Scholar
  4. 4.
    Huet, G.: Résolution d'équations dans des languages d'ordre 1, 2, ..., ω. Thèse de doctorat d'état, Université Paris VII, 1976.Google Scholar
  5. 5.
    Huet, G. and Oppen, D.C.: Equations and Rewrite Rules: A Survey, in Formal Languages: Perspectives and Open Problems, Ed. R. Book, Academic Press, 1980.Google Scholar
  6. 6.
    Hullot, J.M.: Canonical Forms and Unification, Proc. 5th Workshop on Automated Deduction, LNCS 87, 318–334, Springer, 1980.Google Scholar
  7. 7.
    Kirchner, C.: A New Equational Unification Method: A Generalisation of Martelli-Montanari's Algorithm, 7th Int. Conf. on Automated Deduction, LNCS 170, 224–247, Springer, 1984.Google Scholar
  8. 8.
    Makanin, G.S.: The Problem of Solvability of Equations in a Free Semigroup, Soviet Akad., Nauk SSSR, Tom 233, no 2, 1977.Google Scholar
  9. 9.
    Martelli, A. and Montanari, U.: An Efficient Unification Algorithm, ACM Trans. Programming Languages and Systems 4(2), 258–282, 1982.Google Scholar
  10. 10.
    Siekmann, J.: Universal Unification, 7th Int. Conf. on Automated Deduction, LNCS 170, 1–42, Springer, 1984.Google Scholar
  11. 11.
    Szabó, P.: Unifikationstheorie erster Ordnung. Thesis, Univ. Karlsruhe, 1982.Google Scholar
  12. 12.
    Tarjan, R.E.: Efficiency of a Good but not Linear Set Union Algorithm, JACM 22(2), 215–225.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Stefan Arnborg
    • 1
  • Erik Tidén
    • 1
  1. 1.Department of Numerical Analysis and Computing ScienceRoyal Institute of TechnologyStockholm 70Sweden

Personalised recommendations