Petrireve: Proving Petri net properties with rewriting systems

  • C. Choppy
  • C. Johnen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 202)


We present here an approach using rewriting systems for analysing and proving properties on Petri nets. This approach is implemented in the system PETRIREVE. By establishing a link between the graphic Petri net design and simulation system PETRIPOTE and the term rewriting system generator REVE, PETRIREVE provides an environment for the design and verification of Petri nets. Representing Petri nets by rewriting systems allows easy and direct proofs of the behaviour correctness of the net to be carried out, without having to build the marking graph or to search for net invariants.


Critical Pair Priority Transition Recursive Decomposition Constant Cycle Completion Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bea 83]
    Beaudouin-Lafon M., "Petripote: a graphic system for Petri-nets design and simulation", Proc 4th European Workshop on Applications and Theory of Petri Nets, Toulouse, France, 1983, pp. 20–30Google Scholar
  2. [Ber 83]
    Berthelot G., "Transformations of Petri net", Proc. 5th European Workshop on Application and Theory of Petri nets, Arhus University, Denmark, 1984.Google Scholar
  3. [Ber 81]
    Berthomieu B., "Algebraic Specification of Communication Protocols". Research Report ISI//RR-81-98.Google Scholar
  4. [Ber 82]
    Berthomieu B., "Techniques algébriques pour la spécification et vérification de protocoles de communication", ler Colloque AFCET de Génie Logiciel, Paris, 1982.Google Scholar
  5. [Bra 83]
    Brams G.W. "Réseau de Petri théorie et pratique", Paris, Masson, 1983.Google Scholar
  6. [FG 84]
    Forgaard R., Guttag J.V., "REVE: a term rewriting system generator with failure-resistant Knuth-Bendix", Proc. of an NSF Workshop on the rewrite rule laboratory, Sep 1983, J. V. Guttag, D. Kapur and D.R. Musser eds., Report no 84GEN008, Avril 1984, General Electric.Google Scholar
  7. [Ger 80]
    Gerhardt S. et al., "An overview of AFFIRM: a specification and verification system", Proc IFIP, Australia, 1980.Google Scholar
  8. [HH 80]
    Huet G., Hullot J-M., "Proofs induction in equational theories with constructors", Proc 21 st Symp. on Foundations of Computer Science, Los Angeles, October 1980, pp 96–107.Google Scholar
  9. [HH 81]
    Huet G., Hullot J-M., "A complete proof of correctness of the KNUTH-BENDIX completion algorithm", Journal of Computer and System Science 23(1):11–21, August 1981.Google Scholar
  10. [HO 80]
    Huet G., Oppen D.G., "Equations and rewrite Rules A SURVEY", in "Formal Language Theory: Pespectives and open Problems", New-York, ed R. Book, Academic Press, 1980, pp 349–405.Google Scholar
  11. [Joh 84]
    Johnen C., "PETRIREVE: Parallélisme et systèmes de réécritures", D.E.A. Report, L.R.I., Orsay, September 1984.Google Scholar
  12. [Jul 81]
    Julliand J., "Expression des communications entre processus d'un programme parallèle par des types abstraits", Thèse, Besançon, 1981.Google Scholar
  13. [JP 82]
    Julliand J., Perrin G.R., "Construction de programmes parallèles et spécification des communications par des types abstraits", AFCET group meeting GROPLAN, Auron, France, 1981.Google Scholar
  14. [JLR 82]
    Jouannaud J.P., Lescanne P., Reinig F., "Recursive decomposition ordering", Conf. on Formal Description of Programming Concepts, Garmish, 1982.Google Scholar
  15. [Les 83]
    Lescanne P., "Computer experiments with the REVE term rewriting system generator", Proc 10th Symp. on Principle of Programming Languages, Association for Computing Machinery, Austin TX, USA, 1983, pp. 99–108.Google Scholar
  16. [Les 84]
    Lescanne P., "Uniform termination of term rewriting systems: recursive decomposition with status", Proc CAAP, Bordeaux, France, Cambridge University Press, 1984.Google Scholar
  17. [MR 80]
    Memmi G., Roucairol G., "Linear algebra in the net theory", Proc. of Advanced Course on General Net Theory of Processes and Systems, W. Brauer ed., Springer Verlag L.N.C.S 1984.Google Scholar
  18. [Oue 84]
    Ouerghi M.S., "Sémantique algébrique d'un langage de programmation supportant le concept de processus communicants", Thèse de 3ème cycle, Nancy, 1984.Google Scholar
  19. [Rei 81]
    Reinig F., "Les ordres de décomposition: un outil incrémental pour prouver la terminaison finie de systèmes de réécriture de termes", Thèse de 3ème cycle, France, Nancy, CRIN, 81-R-040, Oct 1981.Google Scholar
  20. [STE 82]
    Sunshine C.A., Thompson D.H., Erickson R.W., Gerhardt S.L., Schwabe D., "Specification and verification of communication protocols in AFFIRM using state transition models", IEEE Trans. on Software Engineering, vol SE-8, no 5, Sep 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • C. Choppy
    • 1
  • C. Johnen
    • 1
  1. 1.Laboratoire de Recherche en InformatiqueUniversité de Paris-SudOrsay - CedexFrance

Personalised recommendations