Advertisement

Steric and electronic substituent effects on the carbon-carbon bond

  • Christoph Rüchardt
  • Hans-Dieter Beckhaus
Conference paper
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 130)

Keywords

Bond Strength Resonance Effect Bond Dissociation Energy Bond Dissociation Energy Bond Dissociation Enthalpy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. 1.
    Egger, K. W., Cooks, A. T.: Helv. Chim. Acta 56, 1516, 1537, (1973)Google Scholar
  2. 2.
    McBride, J. M.: Tetrahedron 30, 2009 (1974)Google Scholar
  3. 3.
    D'iachkowski, F. S., Dubnov, M. M., Shilov, E. A.: Dokl. Akad. Nauk., SSSR 122, 629 (1958)Google Scholar
  4. 4.
    To illustrate this factor by an example, the diameter of an atomic nucleus (10−12 cm) has to be compared with the distance of 1 light year (1018 cm)!Google Scholar
  5. 5.
    This definition of the homopolar bond dissociation enthalpy has to be distinguished from its heteropolar counterpart, the dissociation of a bond into ions 1) An example of a particularly low heteropolar bond dissociation enthalpy for a C—C bond was recently discovered by Arnett6).Google Scholar
  6. 6.
    Arnett, E. M., Troughton, E. B., McPhail, A. T., Molter, K. E.: J. Am. Chem. Soc. 105, 6172 (1983), see also Chem. and Enging. News, March 5, 1984, p. 29Google Scholar
  7. 6a.
    For a recent critical discussion of this argument see A. M. DeP. Nicholas, D. R. Arnold, Can J. Chem. 62, 1850 (1984)Google Scholar
  8. 7.
    Ziegler, K.: Angew. Chem. 61, 168 (1949)Google Scholar
  9. 8.
    More precisely the change in strain on bond dissociation Ds determines the driving force. This has been expressed by the concept of front strain later; see e.g., Slutsky, J., Bingham, R. C., von R. Schleyer, P., Dickerson, W. C., Brown, H. C.: J. Am. Chem. Sox. 96, 1969 (1974) and references thereinGoogle Scholar
  10. 9a.
    For a first review see Rüchardt, C., Beckhaus, N.-D.: Angew. Chem. 92, 417 (1980); Angew. Chem. Int. Ed. Engl. 19, 429 (1980); see also Rüchardt, C.: Sitzungsber. Heidelberger Akad. Wiss., Math.-Nat. Klasse 1984, 53Google Scholar
  11. 9b.
    Relationships between structure and strain in highly congested ethanes will be reviewed and discussed elsewhere, Angew. Chem. 1985 in print.Google Scholar
  12. 10.
    Beckhaus, H.-D., Schoch, J., Rüchardt, C.: Chem. Ber. 109, 1369 (1976)Google Scholar
  13. 10.a
    Bernlöhr, W., Beckhaus, H.-D., Lindner, H. J., Rüchardt, C.: ibid. 117, 3303 (1984)Google Scholar
  14. 11.
    De Jongh, H. A. P., De Jonge, C. R. H. I., Sinnige, H. J. M., De Klein, W. J., Huijsmans, W. G. B., Mijs, W. J., van den Hoek, W. J., Smidt, J.: J. Org. Chem. 37, 1960 (1972)Google Scholar
  15. 12.
    Petrakis, L., Grandy, D. W.: Free Radicals in Coals and Synthetic Fuels, Elsevier, Amsterdam 1983Google Scholar
  16. 12. a
    Poutsma, M. L., Douglas, E. C., Leach, J. E.: J. Am. Chem. Soc. 106, 1136 (1984) and references thereinGoogle Scholar
  17. 13.
    Hawkins, W. L.: Polymer Degradation and Stabilisation, Springer, Berlin 1984Google Scholar
  18. 14a.
    Beckhaus, H.-D., Rüchardt, C.: Chem. Ber. 110, 878 (1977)Google Scholar
  19. 14b.
    Winiker, R., Beckhaus, H.-D., Rüchardt, C.: ibid. 113, 3456 (1980)Google Scholar
  20. 15.
    Hellmann, G., Beckhaus, H.-D., Rüchardt, C.: ibid. 112, 1808 (1979)Google Scholar
  21. 16.
    Hellmann, G., Hellmann, S., Beckhaus, H.-D., Rüchardt, C.: ibid. 115, 3364 (1982)Google Scholar
  22. 17.
    Hellmann, S., Beckhaus, H.-D., Rüchardt, C.: ibid. 116, 2238 (1983)Google Scholar
  23. 18.
    Kratt, G., Beckhaus, H.-D., Rüchardt, C.: ibid. 117, 1748 (1984)Google Scholar
  24. 19.
    Bockrath, B., Bittner, E., McGrew, J.: J. Am. Chem. Soc. 106, 135 (1984)Google Scholar
  25. 20.
    Eichin, K. H., Beckhaus, H.-D., Hellmann, S., Fritz, H., Peters, E. M., Peters, K., v. Schnering, H.-G., Rüchardt, C.: Chem. Ber. 116, 1787 (1983)Google Scholar
  26. 21.
    Bernlöhr, W., Beckhaus, H.-D., Peters, K., v. Schnering, H.-G., Rüchardt, C.: ibid. 117, 1013 (1984)Google Scholar
  27. 22.
    Koenig, T., Fischer, H.: Free Radicals, Vol. I (Kochi, J.K., ed.) p. 157, J. Wiley, New York 1973Google Scholar
  28. 23.
    Gibian, M. J., Corley, R. C.: Chem. Rev. 73, 441 (1973)Google Scholar
  29. 24.
    Kaiser, J. H., Beckhaus, H.-D.: unpublishedGoogle Scholar
  30. 25.
    Beckhaus, H.-D., Kratt, G., Lay, K., Geiselmann, J., Rüchardt, C., Kitchke, B., Lindner, H. J.: Chem. Ber. 113, 3441 (1980)Google Scholar
  31. 26.
    Beckhaus, H.-D., Rüchardt, C., Smisek, M.: Thermochim. Acta 79, 149 (1984)Google Scholar
  32. 27.
    Kratt, G., Beckhaus, H.-D., Bernlöhr, W., Rüchardt, C.: ibid. 62, 279 (1983)Google Scholar
  33. 28.
    Ducros, M., Gruson, J. F., Sannier, M.: ibid. 36, 39 (1980)Google Scholar
  34. 29.
    v. R. Schleyer, P., Williams, J. E., Blanchard, K. R.: J. Am. Chem. Soc. 92, 2377 (1970)Google Scholar
  35. 30.
    Beckhaus, H.-D.: Chem. Ber. 116, 86 (1983)Google Scholar
  36. 31.
    Barbe, W., Beckhaus, H.-D., Lindner, H.J., Rüchardt, C.: Chem. Ber. 116, 1017 (1983)Google Scholar
  37. 32a.
    Allinger, N. L.: J. Am. Chem. Soc. 99, 8127 (1977)Google Scholar
  38. 32b.
    Allinger, N. L., Yuh, Y. H.: Quantum Chemistry Program Exchange, Indiana Univ., Program No. 395Google Scholar
  39. 32c.
    Burkert, U., Allinger, N. L.: Molecular Mechanics, ACS Monograph, Series No. 177, Washington D.C. 1982Google Scholar
  40. 32d.
    Throughout this work the term “MM2 result” refers to the ΔHf°(g) values obtained from calculations using the MM2 force field for alkanes (Ref. 32a) and its extensions to alkylbenzenes (Ref. 30), succinonitriles (Ref. 31, 62), dimethoxyethanes (Ref. 62, 65, 66), succinic esters (Ref. 64) and γ-diketones (Ref. 63). The strain enthalpies derived from these values, though often called strain energy (MM2), are calculated according to Schleyer's formalism for alkanes (Ref. 29) which has been extended to the compounds under consideration (Ref. 30, 31, 62–66). Note that the formalism introduced by Allinger (Ref. 32a–c), which is included in the QCPE version of the MM2 program of Ref. 32b, normally results in somewhat higher values for the strain enthalpy than Schleyer's formalism.Google Scholar
  41. 33.
    Flamm-ter Meer, M. A., Beckhaus, H.-D., Rüchardt, C.: Thermochim. Acta 80, 81 (1984)Google Scholar
  42. 34.
    Beckhaus, H.-D., Gleißner, R.: work in progressGoogle Scholar
  43. 35.
    Kratt, G., Beckhaus, H.-D., Lindner, H. J., Rüchardt, C.: Chem. Ber. 116, 3235 (1983)Google Scholar
  44. 36.
    Beckhaus, H.-D., Rüchardt, C., Anderson, J. E.: Tetrahedron 38, 2299 (1982); for a modified version of the MM2 force field to calculate barriers of rotation see Jaime, C., Osawa, E.: Tetrahedron 39, 2769 (1983)Google Scholar
  45. 37.
    The activation parameters 14) and the correlation equation have been recalculated using the more advanced statistical analysis as in all other series. 38) The deviations of the results from the earlier ones 14) are only minor.Google Scholar
  46. 38.
    Program Kinetik 80, Dissertation Barbe, W., Univ. Freiburg, 1981; for the transformation of the statistical weights of the Eyring correlation, see Cvetanovic, R. G., Singleton, D. L.: Int. J. Chem. Kinetics 9, 481 (1977)Google Scholar
  47. 39.
    Dissertation Flamm-ter Meer, M. A.: Univ. Freiburg, 1984Google Scholar
  48. 40a.
    Beckhaus, H.-D., Flamm, M. A., Rüchardt, C.: Tetrahedron Lett. 23, 1805 (1982)Google Scholar
  49. 40b.
    Schulman, J. M., Disch, R. L.: J. Am. Chem. Soc. 106, 1202 (1984)Google Scholar
  50. 40c.
    Clark, T., McO. Knox, T., McKervey, M. A., Mackle, H., Rooney, J. J.: ibid. 101, 2404 (1979)Google Scholar
  51. 41.
    Hammett, L. P.: Physikalische Organische Chemie, p. 387, Verlag Chemie, Weinheim 1973Google Scholar
  52. 42.
    Exner, O.: Progr. Phys. Org. Chem. (Streitwieser, A. S., Taft, R. W. ed.) 10, 411 (1973)Google Scholar
  53. 43.
    Benson, S. W.: Thermochemical Kinetics, 2nd ed., pp 21–23, J. Wiley, New York 1976Google Scholar
  54. 44.
    Glasstone, S., Laidler, K. J., Eyring, H.: The Theory of Rate Processes, 1 st ed., p. 196, McGraw-Hill, New York 1941Google Scholar
  55. 46a.
    Beckhaus, H.-D.: unpublishedGoogle Scholar
  56. 46b.
    N. L. Allinger has independently developed a force field for radicals. In a paper submitted for publication in the Journal of Molecular Structure he has made the suggestion to use ΔG/Ds correlations instead of ΔG/H s correlations for our kinetic results, Apparently he was not aware that this kind of analysis had already been introduced; see e.g. Ref. 17, 18. We thank Prof. Allinger for a preprint of this paper.Google Scholar
  57. 47.
    A similar approach was also suggested by Lomas, J. S., Dubois, J.-E.: Tetrahedron Lett. 24, 1161 (1983); J. Org. Chem. 47, 4505 (1982)Google Scholar
  58. 48.
    Mendenhall, G. D., Griller, D., Lindsay, D., Tidwell, T. T., Ingold, K. U.: J. Am. Chem. Soc. 96, 2441 (1974) followed the rate of disappearance of di-t-butylmethyl radicals by esr but could not find the dimer 49) as a productGoogle Scholar
  59. 49.
    Beckhaus, H.-D., Hellmann, G., Rüchard, C.: Chem. Ber. 111, 72 (1978)Google Scholar
  60. 50a.
    Kaiser, J. H., Beckhaus, H.-D.; work in progress and Dissertation Kaiser, J. H.: Univ. Freiburg, in preparationGoogle Scholar
  61. 50b.
    Schuh, H., Fischer, H.: Helv. Chim. Acta 61, 2130, 2463 (1978)Google Scholar
  62. 51.
    Rüchardt, C.: Angew. Chem. 82, 845 (1970); Angew. Chem. Int. Ed. Engl. 9, 830 (1970)Google Scholar
  63. 52a.
    Benson, S. W.: Angew. Chem. 90, 868 (1978); Angew. Chem. Int. Ed. Engl. 17, 812 (1978)Google Scholar
  64. 52b.
    Sanderson, R. T.: J. Am. Chem. Soc. 97, 1367 (1975)Google Scholar
  65. 52c.
    Larson, J. R., Epiotis, N. D., Shaik, S. S.: Tetrahedron 37, 1205 (1981)Google Scholar
  66. 53a.
    Baas, J. M. A., van den Graaf, B., Beckhaus, H.-D.: paper in preparationGoogle Scholar
  67. 53b.
    van de Graaf, B., Baas, J. M. A., van Veen, A.: Rec. Trav. Chim. Pays-Bas 99, 175 (1980)Google Scholar
  68. 54.
    Beckhaus, H.-D., McCullough, K. J., Fritz, H., Rüchardt, C., Kitschke, B., Lindner, H. J., Dougherty, D. A., Mislow, K.: Chem. Ber. 113, 1867 (1980)Google Scholar
  69. 55.
    Beckhaus, H.-D., Hellmann, G., Rüchardt, C., Kitschke, B., Lindner, H.-J., Fritz, H.: ibid. 111, 3764 (1978)Google Scholar
  70. 56.
    Baxter, S. G., Fritz, H., Hellmann, G., Kitschke, B., Lindner, H.-J., Mislow, K., Rüchardt, C., Weiner, S., J. Am. Chem. Soc. 101, 4493 (1979)Google Scholar
  71. 57.
    McMillen, D. F., Golden, D. M.: Ann. Rev. Phys. Chem. 33, 493 (1982)Google Scholar
  72. 58.
    Meot-Ner, M.: J. Am. Chem. Soc. 104, 5 (1982)Google Scholar
  73. 59.
    In this paper the resonance energy Hr of a radical is defined as the increase in stabilization energy of a radical center when an α-methyl group is exchanged for a substituent, e.g. phenyl. For a definition based on methane see Ref. 60Google Scholar
  74. 60.
    Burkey, T. J., Castelhano, A. L., Griller, D., Lossing, F. P.: J. Am. Chem. Soc. 105, 4701, (1983)Google Scholar
  75. 61.
    Barbe, W., Beckhaus, H.-D., Rüchardt, C.: Chem. Ber. 116, 1042 (1983)Google Scholar
  76. 62.
    Zamkanei, M., Kaiser, J. H., Birkhofer, H., Beckhaus, H.-D., Rüchardt, C.: Chem. Ber. 116, 3216 (1983); unfortunately the numerical values for ΔH and ΔS of the dissociation equilibrium between 39 and the radicals 37 were confused. They should read: ΔHdiss=35.8 ± 0.4 kcal · mol−1 and ΔSdiss=31.1 ± 0.8 e.u.Google Scholar
  77. 63.
    Diplomarbeit Gleißner, R.: Univ. Freiburg 1983 and unpublished workGoogle Scholar
  78. 64.
    Dissertation Rausch, R.: Univ. Freiburg 1984Google Scholar
  79. 65.
    Dissertation Birkhofer, H.: Univ. Freiburg, in preparationGoogle Scholar
  80. 66.
    For references see Birkhofer, H., Beckhaus, H.-D., Rüchardt, C.: Tetrahedron Lett. 24, 185 (1983)Google Scholar
  81. 67.
    Rüchardt, C.: Mechanismen radikalischer Reaktionen, Forschungsbericht des Landes Nordrhein-Westfalen Nr. 2471, Westdeutscher Verlag, Opladen 1975Google Scholar
  82. 68.
    Fleming, I.: Grenzorbitale und Reaktionen Organischer Verbindungen, Verlag Chemie, Weinheim 1979. Fukui, K.: Topics Curr. Chem. 15, 1 (1970). Fujimoto, H., Yamabe, S., Minato, T., Fukui, F.: J. Am. Chem. Soc. 94, 9205 (1972)Google Scholar
  83. 69.
    Viehe, H. G., Merényi, R., Stella, L., Janusek, Z.: Angew. Chem. 91, 982 (1979); Angew. Chem. Int. Ed. Engl. 18, 917 (1979)Google Scholar
  84. 70.
    Dissertation Schaetzer, J.: Univ. Freiburg, in preparationGoogle Scholar
  85. 71.
    Barbe, W., Beckhaus, H.-D., Rüchardt, C.: Chem. Ber. 116, 1058 (1983)Google Scholar
  86. 72.
    Bernlöhr, W., Beckhaus, H.-D., Rüchardt, C.: ibid. 117, 1026 (1984)Google Scholar
  87. 73.
    Andersen, P.: Acta Chem. Scand. 19, 629 (1965); Andersen, P., Kleve, B.: ibid. 21, 2599 (1967)Google Scholar
  88. 74.
    Peters, K., v. Schnering, H.-G.: unpublishedGoogle Scholar
  89. 76.
    Korth, H.-G., Sustmann, R., Merényi, R., Viehe, H. G.: J. Chem. Soc., Perkin Trans. 2, 1983, 67Google Scholar
  90. 77.
    A similar situation was described recently in an other context by Houk, K. N., Rondan, N. G., Mareda, J.: J. Am. Chem. Soc. 106, 4291 (1984); Houk, K. N., Rondan, N. G.: ibid. 4293. We have reasons to assume that another, sandwich-like arrangement finds some stabilization by secondary valence interactionsGoogle Scholar
  91. 78.
    Beckhaus, H.-D., Hellmann, G., Rüchardt, C., Kitschke, B., Lindner, H. J.: Chem. Ber. 111, 3780 (1978)Google Scholar
  92. 79.
    Hellmann, S., Beckhaus, H.-D., Rüchardt, C.: ibid. 116, 2219 (1983)Google Scholar
  93. 80.
    For the discussion of relationships between bond character and bond length see also Bartell, L. S.: Tetrahedron 17, 1177 (1962); Szabò, Z. G., Konkoly Thege, 1.: Acta Chim. Acad. Hung. Tom. 86, 127 (1975)Google Scholar
  94. 81.
    Hase, W. L.: Acc. Chem. Res. 16, 258 (1983)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Christoph Rüchardt
    • 1
  • Hans-Dieter Beckhaus
    • 1
  1. 1.Institut für Organische Chemie und Biochemie der Universität FreiburgFreiburgFRG

Personalised recommendations