Advertisement

Phase distribution chromatography. Possibilities and limitations

  • Georg S. Greschner
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 73/74)

Abstract

This article reviews the development of a new chromatographic column method, the phase distribution chromatography (PDC). PDC is based on the interaction of an injected diluted solution of a polymer (mobile phase) with a non-crosslinked gel of the same polymer immobilized on the surface of small glass beads. This interaction takes place at a constant temperature below the theta temperature of the system. The observed high resolution of the PDC-column at low temperatures cannot be explained by a reversible-thermodynamical equilibrium as described by the usual partition function K(P). It is rather explained by a new partition function Q(P) of a flow-equilibrium (steady state) for the P-mer transported between sol and gel in the column. The flow-equilibrium itself is explained by means of a deformation of the transported macromolecules, caused by the stress related to the high and steep velocity gradient of the column liquid near the gel front. Since the resolution of a PDC-column vanishes near the theta point of the system, spreading phenomena can be measured exactly in this region. Both properties of the column — the powerful resolution at low column temperatures, and the vanishing of its resolution near the theta point — enable an efficient and exact determination of narrow molecular weight distributions from PDC-measurements. The possibilities of PDC in these three fields (thermodynamics and kinetics of the resolution mechanism, spreading of the injected profile, and determination of the MWD) are demonstrated in detail. Limitations of the new column method are also discussed.

Keywords

Partition Function Elution Curve Narrow Molecular Weight Distribution Strip Method Transport Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Casper, R. H.: Thesis, Mainz 1970Google Scholar
  2. 2.
    Casper, R. H., Schulz, G. V.: Separ. Sci. 6(2), 321 (1971)Google Scholar
  3. 3.
    Greschner, G. S.: Makromol. Chem. 180, 2551 (1979)CrossRefGoogle Scholar
  4. 4.
    Greschner, G. S.: Makromol. Chem. 181, 1435 (1980)CrossRefGoogle Scholar
  5. 5.
    Greschner, G. S.: Makromol. Chem. 182, 2845 (1981)CrossRefGoogle Scholar
  6. 6.
    Greschner, G. S.: Makromol. Chem. 183, 2823 (1982)CrossRefGoogle Scholar
  7. 7.
    Greschner, G. S.: Eur. Polym. J. 19, 881 (1983)CrossRefGoogle Scholar
  8. 8.
    Greschner, G. S.: Eur. Polym. J. 20, 475 (1984)CrossRefGoogle Scholar
  9. 9.
    Greschner, G. S.: Makromol. Chem. 186, 1047 (1985)CrossRefGoogle Scholar
  10. 10.
    Wolf, B. A., Breitenbach, J. W.: Makromol. Chem, 108, 263 (1967)CrossRefGoogle Scholar
  11. 11.
    Shhulz, G. V., Jirgensons, B.: Z. Phys. Chem. (B) 46, 105 (1940)Google Scholar
  12. 12.
    Kleintjens, L. A., Koningsveld, R., Stockmayer, W. H.: Br. Polym. J. 8, 144 (1976)Google Scholar
  13. 13.
    Wolf, B. A., Bieringer, H. F., Breitenbach, J. W.: Br. Polym. J. 10, 156 (1978)Google Scholar
  14. 14.
    Schulz, G. V., Günner von, K., Gerrens, H.: Z. Phys. Chem. (Ffm) 4, 192 (1955)Google Scholar
  15. 15.
    Schulz, G. V., Horbach, A.: Z. Phys. Chem. (Ffm) 22, 377 (1959)Google Scholar
  16. 16.
    Reinsch, C. H.: Numerische Mathematik 10, 177 (1967); one chapter in: Sauer, R., Szabo, I.: “Mathematische Hilfsmittel f. Ingenieure”, Springer-Verlag, Heidelberg 1970, where also ALGOL-programs can be foundGoogle Scholar
  17. 17.
    Greschner, G. S.: Makromol. Chem. 170, 203 (1973)CrossRefGoogle Scholar
  18. 18.
    von Bertalanffy: “Biophysik des Flussgleichgewichtes” Vieweg, Braunschweig 1953Google Scholar
  19. 19.
    Glansdorff, P. and Prigogine, I.: “Thermodynamic Theory of Structure, Stability and Fluctuations”, Wiley-Interscience Publ. London-N. Y. 1971Google Scholar
  20. 20.
    Schulz, G. V.: Z. Phys. Chem. (Ffm) 8, 290 (1956)Google Scholar
  21. 21.
    Schulz, G. V., Deussen, P., Scholz, A.: Makromol. Chem. 69, 47 (1963)CrossRefGoogle Scholar
  22. 22.
    Schulz, G. V., Berger, K. C. and Scholz, A. G. R.: Berichte der Bunsenges. 69, 856 (1965)Google Scholar
  23. 23.
    Flory, P. J.: “Principles of Polymer Chemistry”, Cornell. Univ. Press, Ithaca, New York, 1953Google Scholar
  24. 24.
    Peterlin, A.: Makromol. Chem. 44–46, 338 (1961)CrossRefGoogle Scholar
  25. 25.
    Böhm, L. L., Casper, R. H. and Schulz, G. V.: J. Polym. Sci. 12, 239 (1974)Google Scholar
  26. 26.
    Tung, L. H.: J. Appl. Polym. Sci. 10, 375 (1966); Tung, L. H.: ibid. 33, 775 (1969)CrossRefGoogle Scholar
  27. 27.
    Rosen, E. M. and Prowder, T.: Sep. Sci. 5, 437 (1970); J. Appl. Polym. Sci. 15, 1687 (1971)Google Scholar
  28. 28.
    Yau, W. W. and Malone, C. P.: J. Polym. Sci., Part B, 5, 663 (1967)Google Scholar
  29. 29.
    Böhm, L. L.: private communicationGoogle Scholar
  30. 30.
    Greschner, G. S.: “Maxwellgleichungen”, vol. 3, “Mathematische Hilfsmittel”, Hüthig & Wepf Verlag Basel-Heidelberg-New York 1981, chapter 5, §21 and chapter 7, §31, where also concrete advices for programming are givenGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Georg S. Greschner
    • 1
  1. 1.Mainz 1FRG

Personalised recommendations