Advertisement

An improved failures model for communicating processes

  • S. D. Brookes
  • A. W. Roscoe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 197)

Abstract

We extend the failures model of communicating processes to allow a more satisfactory treatment of divergence in addition to deadlock. The relationship between the revised model and the old model is discussed, and we make some connections with various models proposed by other authors.

Keywords

Operational Semantic Failure Model Parallel Composition Communicate Sequential Process Denotational Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. [1]
    Apt, K. R., Francez, N., and de Roever, W. P., A Proof System for Communicating Sequential Processes, ACM TOPLAS, Vol. 2 No. 3, July 1980.Google Scholar
  2. [2]
    Brookes, S. D., A Model for Communicating Sequential Processes, Ph. D. thesis, Oxford University (1983). Available as CMU Technical Report CMU-CS-83-149 and PRG Monograph.Google Scholar
  3. [3]
    Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W., A Theory of Communicating Sequential Processes, Oxford University Computing Laboratory, Programming Research Group, Technical Report PRG-16.Google Scholar
  4. [4]
    Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W., A Theory of Communicating Sequential Processes, JACM July 1984.Google Scholar
  5. [5]
    Brookes, S. D., and Roscoe, A. W., An Improved failures Model for Communicating Processes (full version of this paper), to appear, CMU Technical Report.Google Scholar
  6. [6]
    Brookes, S. D., and Roscoe, A. W., Deadlock Analysis in Networks of Processes, to appear in Proceedings of the NATO Advanced Seminar on Concurrency, La Colle-Sur-Loup, Springer Verlag LNCS (1985).Google Scholar
  7. [7]
    Broy, M., Semantics of Communicating Processes, preprint, Institut fur Informatik, Technische Universiat Munchen (1983).Google Scholar
  8. [8]
    Darondeau, Ph., An enlarged definition and complete axiomatization of observational congruence of finite processes, Springer Verlag LNCS vol. 137, pp. 47–62 (1982).Google Scholar
  9. [9]
    Francez, N., Lehmann, D., and Pnueli, A., A Linear History Semantics for Communicating Processes, Theoretical Computer Science 32 (1984) 25–46.Google Scholar
  10. [10]
    Francez, N., Hoare, C. A. R., Lehmann, D., and de Roever, W. P., Semantics of nondeterminism, concurrency and communication, JCSS vol. 19 no. 3 (1979).Google Scholar
  11. [11]
    Hennessy, M., Synchronous and Asynchronous Experiments on Processes, Information and Control, Vol. 59, Nos 1–3, pp. 36–83 (1983).Google Scholar
  12. [12]
    Hennessy, M., and de Nicola, R., Testing equivalences for processes, Proc. ICALP 1983, Springer LNCS 154 (1983).Google Scholar
  13. [13]
    Hoare, C. A. R., A Model for Communicating Sequential Processes, Oxford University Computing Laboratory, Programming Research Group, Technical Report PRG-22.Google Scholar
  14. [14]
    Hoare, C. A. R., Communicating Sequential Processes, CACM 1978.Google Scholar
  15. [15]
    Kennaway, J., Formal semantics of nondeterminism and parallelism, D. Phil thesis, Oxford University (1981).Google Scholar
  16. [16]
    Kennaway, J., A theory of nondeterminism, Springer LNCS vol. 85, pp 338–350 (1980).Google Scholar
  17. [17]
    Levin, G. M., and Gries, D., A Proof Technique for Communicating Sequential Processes, Acta Informatica 15 (1981).Google Scholar
  18. [18]
    Milner, R., A Calculus of Communicating Systems, Springer Verlag LNCS 92.Google Scholar
  19. [19]
    de Nicola, R., Two Complete Sets of Axioms for a Theory of Communicating Sequential Processes, Proc. International Conference on Foundations of Computation Theory, Borgholm, Sweden, Springer LNCS (1983).Google Scholar
  20. [20]
    de Nicola, R., Models and Operators for Nondeterministic Processes, Proceedings of the Conference on Mathematical Foundations of Computer Science, Springer Verlag LNCS (1984).Google Scholar
  21. [21]
    Olderog, E-R, Specification-oriented semantics of communicating processes, Proc. ICALP 1983, Springer LNCS 154 (1983).Google Scholar
  22. [22]
    Plotkin, An Operational Semantics for CSP, W.G.2.2 Conference proceedings (1982).Google Scholar
  23. [23]
    Roscoe, A. W., A Mathematical Theory of Communicating Processes, Ph. D. thesis, Oxford University (1982).Google Scholar
  24. [24]
    Roscoe, A. W., A Denotational Semantics for occam, Proc. NSF-SERC Seminar on Concurrency, to appear in Springer Lecture Notes series (1984).Google Scholar
  25. [25]
    Rounds, W. C., and Brookes, S. D., Possible futures, acceptances, refusals and communicating processes, Proc. 22nd IEEE Symposium on Foundations of Computer Science (1981).Google Scholar
  26. [26]
    Stoy, J. E., Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory, MIT Press, Cambridge, Mass. (1977).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • S. D. Brookes
    • 1
  • A. W. Roscoe
    • 2
  1. 1.Carnegie-Mellon UniversityPittsburghUSA
  2. 2.Programming Research GroupOxford UniversityOxfordEngland

Personalised recommendations