Advertisement

Nuclear matter under extreme conditions

  • J. Rafelski
  • M. Danos
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 231)

Keywords

Nuclear Matter Baryon Number Strange Quark Baryon Density True Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. a.
    J. Rafelski and M. Danos, “Perspectives in High Energy Nuclear Collisons,” NBSIR 83-2725, Washington, D.C. 1983.Google Scholar
  2. 1. b.
    Workshop on Future Relativistic Heavy Ion Experiments, Proceedings edited by R. Stock and R. Bock, GSI 81-6, Orange Report 1981.Google Scholar
  3. 1. c.
    Workshop In Quark Matter Formation and Heavy Ion Collisions, Proceedings edited by M. Jacob and H. Satz, World Scientific Publ. Co., Singapore 1982.Google Scholar
  4. 2. a.
    An incomplete list of quark-gluon plasma papers includes: B. A. Freedman and L. D. McLerran, Phys. Rev. D16 (1977) 1169Google Scholar
  5. 2. b.
    S. A. Chin, Phys. Lett. 78B (1978) 552Google Scholar
  6. 2. c.
    P. D. Morley and M. B. Kislinger, Phys. Rep. 51 (1979) 63CrossRefGoogle Scholar
  7. 2. d.
    J. I. Kapusta, Nucl. Phys. B148 (1979) 461CrossRefGoogle Scholar
  8. 2. e.
    O. K. Kalashnikov and V. V. Kilmov, Phys. Lett. 888 (1979) 328Google Scholar
  9. 2. f.
    E. V. Shuryak, Phys. Lett. 81B (1979) 65; also Phys. Rep. 61 (1980) 71Google Scholar
  10. 2. g.
    J. Rafelski and R. Hagedorn “From Hadron Gas to Quark Matter II,” in Thermodynamics of Quarks and hadrons, Ed. H. Satz, North Holland, Amsterdam 1981.Google Scholar
  11. 2. h.
    J. Rafelski, H.-Th. Elze, and R. Hagedorn, “Hot Hadronic and Quark Matter in p¯-Annihilation on Nuclei,” CERN Preprint TH2912 (1980), in Proceedings of 5th European Symposium on Nucleon-Anti nucleon Interactions, Bressanone 1980, CLEUP, Padua, 1980Google Scholar
  12. 3. a.
    G. Domokos and J. I. Goldman, Phys. Rev. (1981) D23 203Google Scholar
  13. 3. b.
    K. Kajantie and H. I. Mietinnen, Z. Phys. C9 (1981) 341.Google Scholar
  14. 3. c.
    K. Kajantie and H. I. Mietinnen, Z. Phys. C14 (1982) 357.Google Scholar
  15. 4. a.
    J. Rafelski, “Extreme States of Nuclear Matter” in reference [1], p. 282; also Universität Frankfurt Preprint UFTP 52/1981Google Scholar
  16. 4. b.
    J. Rafelski and B. Müller, Phys. Ref. Lett. 48 (1982) 1066CrossRefGoogle Scholar
  17. 4. c.
    P. Koch, J. Rafelski, and W. Greiner, Phys. Fett. 123B (1983), 151.Google Scholar
  18. 4. d.
    J. Rafelski, “Strangeness in Quark-Gluon Plasma,” Universität Frankfurt preprint UFTP86/1982.Google Scholar
  19. 4. e.
    J. Rafelski, Nucl. Phys. A in print 1984.Google Scholar
  20. 5.
    J. Rafelski, “Hot Hadronic Matter” in New Flavours and Hadron Spectroscopy, Editions Frontières 1981, J. Tran Thanh Van, editor, page 619.Google Scholar
  21. 6. a.
    J. Kogut, M. Stone, H. Wyld, J. Shigemitsu, S. Shenker and D. Sinclair, Phys. Rev. Lett 48 (1982) 114.CrossRefGoogle Scholar
  22. 6. b.
    J. Ellis, “Phenomenology of Unified Gauge Theories” CERN-preprint TH 3174.Google Scholar
  23. 6. c.
    L. Van Hove, “Very Dense States of Matter in Particle Physics and Early Cosmology,” lecture at the Institut-Lorentz, 1981/1982, Leiden, Netherlands.Google Scholar
  24. 7. a.
    V. A. Rubakov, JETP Lett 33 (1981) 699, and Nucl. Phys. B203 (1982) 311.Google Scholar
  25. 7. b.
    C. G. Callan, Jr., Nucl. Phys. B212 (1983) 391.CrossRefGoogle Scholar
  26. 7. c.
    C. G. Callan, “Catalysis of Baryon Decay,” lecture at the Magnetic Monopoles Conference, Racine, Wisconsin, October 1982.Google Scholar
  27. 7. d.
    G. Schmidt, W. Greiner, and J. Rafelski, “Quasars: Convective giant stars with quark gluon plasma core,” University of Cape Town preprint UCT-TP 5/84.Google Scholar
  28. 8a.
    These ideas originate in Hagedorn's statistical bootstrap theory, see: R. Hagedorn, Suppl. Nuovo Cimento 3 (1964) 147; and Nuovo Cimento 6 (1968) 311, alsoGoogle Scholar
  29. 8b.
    R. Hagedorn, “How to Deal with Relativistic Heavy Ion Collisions,” p. 236 in ref. [1].Google Scholar
  30. 9. a.
    R. Hagedorn and J. Rafelski, Phys. Lett. 97B (1980) 136.Google Scholar
  31. 9. b.
    The extension of statistical bootstrap to finite baryon number and volume has been introduced in: R. Hagedorn, I. Montvay, and J. Rafelski, Lecture at Erice Workshop “Hadronic Matter at Extreme Energy Density,” edited by N. Cabibbo, Plenum Press, New York (1980) p. 49.Google Scholar
  32. 9. c.
    R. Hagedorn and J. Rafelski, Manuscript in preparation for Physics Reports.Google Scholar
  33. 9. d.
    R. Hagedorn, Z. Phys. C17 (1983) 265 (CERN Preprint TH-3392).Google Scholar
  34. 10. a.
    A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, V. F. Weisskopf, Phys. Rev. D9 (1974) 3471.Google Scholar
  35. 10. b.
    K. Johnson, Acta Phys. Polon. B6 (1975) 865; andGoogle Scholar
  36. 10. c.
    T. de Grand, R. L. Jaffe, K. Johnson, and J. Kiskis, Phys. Rev. D12 (1975) 2060.Google Scholar
  37. 11. a.
    R. Anishetty, P. Koehler, and L. McLerran, Phys. Rev. D22 (1980) 2793.Google Scholar
  38. 11. b.
    J. D. Bjorken, Phys. Rev. D27 (1983) 140.Google Scholar
  39. 12.
    M. Danos and J. Rafelski, “Formation of Quark-Gluon Plasma at Central Rapidity,” University of Frankfurt preprint UFTP 94/1982.Google Scholar
  40. 13. a.
    S. A. Chin, Phys. Lett 119B (1982) 51.Google Scholar
  41. 13. b.
    K. Kajantie and L. McLerran, “Energy Densities, Initial Conditions and Hydrodynamic Equations for Ultrarelativistic Nucleus-Nucleus Collisions,” University of Helsinki Report HU-TPT-82-30.Google Scholar
  42. 14.
    M. Danos and J. Rafelski, Phys. Rev. D27 (1983) 671. See also, M. Danos and J. Rafelski, “Pion Radiation by Hot Quark-Gluon Plasmas” CERN preprint TH-3607.Google Scholar
  43. 15.
    S. Gasiorowicz and J. L. Rosner, “Hadron Spectra and Quarks,” Am. J. Phys. 49 (1981) 954.CrossRefGoogle Scholar
  44. 16.
    E. S. Abers and B. W. Lee, “Gauge Theories,” Phys. Rep. 9C (1973) 1.CrossRefGoogle Scholar
  45. 17.
    P. Soding and G. Wolf, “Experimental Evidence on QCD,rd DESY-Report 81-013; (1981); also, Ann. Rev. Nuc. Part. Sci. (1982).Google Scholar
  46. 18. a.
    P. Langacker and H. Pagels, Phys. Rev D19 (1979) 2070, and references therein.Google Scholar
  47. 18. b.
    S. Narison, N. Paver, E. de Rafael, and D. Treleani, Nucl. Phys. B212 (1983) 365.CrossRefGoogle Scholar
  48. 19.
    R. D. Viollier and J. Rafelski, “Quarkonium Spectra in the Framework of Quantum Chromodynamics,” Helv. Phys. Acta 53 (1980) 352.Google Scholar
  49. 20.
    A. Martin, “Heavy Quark Systems,” CERN-TH 3162, appeared in Proceedings of the Int. Conf. on High Energy Physics, Lisbon, July 1981.Google Scholar
  50. 21. a.
    H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346.CrossRefGoogle Scholar
  51. 21. b.
    D. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.CrossRefGoogle Scholar
  52. 21. c.
    W. Marciano and H. Pagels, “Quantum Chromodynamics,” Phys. Rep. 36C (1978) 137.CrossRefGoogle Scholar
  53. 22. a.
    K. Johnson, “A Simple Model of the Ground State of Quantum Chromodynamics,” SLAC-Publ 2436 (1979), in AIP Conf. Proc. No. 59, Am. Inst. of Phys., N.Y. 1979.Google Scholar
  54. 22. b.
    M. Danos, D. Gogny, and D. Iracani, “Simple model of the QCD Vacuum,” NBSIR 83-2759.Google Scholar
  55. 23.
    J. Rafelski, “Particle Condensates in Strongly Coupled Quantum Field Theory,” UFTP Preprint 67/1981 in Quantum Electrodynamics of Strong Fields, edited by W. Greiner, D. Reidel Publ. Co. (1981)Google Scholar
  56. 24.
    P. Hasenfratz, R. R. Horgan, J. Kuti, and J. M. Richard, Phys. Lett. 958 (1980) 299.Google Scholar
  57. 25.
    See, e.g., M. A. Shifman, Z. Phys. 69 (1981) 347 and references therein.Google Scholar
  58. 26.
    G. Peressutti and B.-S. Skagerstam, “Hydrodynamics and the Bag Model,” Phys. Ref D18 (1978) 4304.Google Scholar
  59. 27.
    See, e.g., R. R. Feynman, “Statistical Mechanics,” W. A. Benjamin, Inc. 1972.Google Scholar
  60. 28.
    H.-Th. Elze, W. Greiner, and J. Rafelski, “The Relativistic Ideal Fermi Gas Revisited,” J. Phys. G6 (1980) L149.Google Scholar
  61. 29. a.
    See, T. Barnes, F. E. Close, and F. deViron, “QQg Hermaphrodite mesons in the MIT bag model,” Rutherford preprint RL-82-088 T.311 and references therein.Google Scholar
  62. 29. b.
    D. Robson, “Toroidal Bags,” Z. Physik C3 (1980) 199.Google Scholar
  63. 30. a.
    S. J. Lindenbaum, in Proceedings XVIth Renconte de Moridae-“New Flavours and Hadron Sopectroscopy,” edited by J. Tran Thanh Van, Frontieres (1981) p. 187.Google Scholar
  64. 30. b.
    See, J. Donoghue, and H. Gomm, Phys. Lett. l128 (1982) 409, and references therein.Google Scholar
  65. 30. c.
    D. G. Aschman, (Crystal Ball collaboration) “Possible Gluonium States in Radiative ψ Decay,” in Proc. of XVIIth Recontre de Moriond, Workshop on New Flavors, Les Arcs, France, 1982.Google Scholar
  66. 31.
    P. Carruthers, “Role of the Phonon in the QCD Plasma,” Los Alamos preprint LA-UR-83-130.Google Scholar
  67. 32.
    C.-G. Kallman and C. Montonen, Phys. Lett. 1158 (1982) 473.Google Scholar
  68. 33.
    H.-Th. Elze, W. Greiner, and J. Rafelski, Phys. Lett. 124B (1983) 515; and H.-Th. El ze, W. Greiner, and J. Rafelski, “Frozen Color Degrees of Freedom,” UFTP preprint 126/1984 and UCT-TP 6/84.Google Scholar
  69. 34. a.
    K. Redlich and L. Turko, Z. Phys. C5 (1980) 201Google Scholar
  70. 34. b.
    L. Turko, Phys. Lett. 104B (1981) 153.Google Scholar
  71. 35.
    J. Rafelski an M. Danos, Phys. Lett 97B (1980) 279.Google Scholar
  72. 36.
    For a discussion of the Haar measure we recommend G. Rosen, “Formulations of Classical and Quantum Dynamical Theory,” Academic Press, New York 1969, Appendix C; or J. P. Elliot and P. G. Dawber, “Symmetry in Physics,” Vols. 1/2, McMillan, London 1979, Appendix A.4.3.Google Scholar
  73. 37.
    B. L. Combridge, Nucl. Phys. B151 (1979) 429.CrossRefGoogle Scholar
  74. 38.
    T. S. Biro, J. Zimanyi, Phys. Lett. 113B (1982) 6.Google Scholar
  75. 39.
    From the study of the process gq¯→ss¯ it was initially concluded [48] that strangness would not saturate. The authors of ref. [48] have since corrected their calculations: T. S. Biro, J. Zimanyi, Nucl. Phys. A395 (1983) 525 and agree now in their results with those given here, as originally presented in ref. [4b].Google Scholar
  76. 40.
    P. Koch, Diploma Thesis Frankfurt 1983 (unpublished).Google Scholar
  77. 41.
    A. Z. Mekjian, Nucl. Phys A384 (1982) 492.Google Scholar
  78. 42.
    P. Koch and J. Rafelski, in preparation.Google Scholar
  79. 43.
    W. Greiner, P. Koch, and J. Rafelski, “Strange Particle Production in pp and pN reactions,” CERN preprint TH-3781.Google Scholar
  80. 44.
    M. Bourquin et al, Nucl. Phys B153 (1970) 13.Google Scholar
  81. 44a.
    M. Bourquin et al, Z. Phys. C5 (1980) 275.Google Scholar
  82. 44b.
    S. F. Biagi et al., Phys. Lett 122B (1983) 455.Google Scholar
  83. 45.
    Oxygen impinging at PS-energies (9-13GeV) on heavy targets is actively considered as a next step in the study of hot nuclear matter. See the GSI proposal reproduced in ref. (1b) page 557.Google Scholar
  84. 46. a)
    J. Rafelski, Phys. Lett. 91B (1980) 281.Google Scholar
  85. 46. b)
    J. Rafelski., “Quark-Gluon Plasma in p¯-Annihilation on Nuclei,” UFTP preprint 76/1982; in Proceedings of Workshop on Physics at LEAR, Erice, May 1982.Google Scholar
  86. 47.
    B. Müller and J. Rafelski, Phys. Lett 116B (1982) 274.Google Scholar
  87. 48.
    B. Y. Oh, P. S. Eastman, Z. Ming Ma, D. L. Parker, G. A. Smith and R. J. Sprafka, Nucl. Phys. B51 (1973) 57.CrossRefGoogle Scholar
  88. 49.
    P. S. Estman, Z. Ming Ma, B. Y. Oh, D. L. Parker, G. A. Smith nd R. J. Sprafka, Nucl. Phys B51 (1973) 29.CrossRefGoogle Scholar
  89. 50.
    B. Y. Oh and G. A. Smith, Nucl. Phys. B40 (1972) 151.CrossRefGoogle Scholar
  90. 51.
    M. A. Mandelkern, L. R. Price, J. Schulz and D. W. Smith, Phys. Rev. D27 (1983) 19.Google Scholar
  91. 52.
    O. Braun, V. Hepp, H. Strabele, and W. Wittek, Nucl. Phys. B160 (1979) 467.CrossRefGoogle Scholar
  92. 53.
    Ch. Derret, H.-Th. Elze, P. Koch, W. Greiner, and J. Rafelski, in preparation.Google Scholar
  93. 54. a.
    W. Busza and A. S. Goldhaber, MIT Reporty No. MIT/LNS/CSC 82-2 (unpublished) and Phys. Lett. (in print).Google Scholar
  94. 54. b.
    D. S. Barton et al. Phys. Rev. D27, (1983) 2580.Google Scholar
  95. 55.
    G. B. Yodh, “Review of Recent Developments in Cosmic Ray Experiments at Very High Energies,” p. 213–236 in reference [1c] and references therein.Google Scholar
  96. 56.
    UA1-Collaboration-CERN, G. Arnison, et al., Phys. Lett. 123B (1983) 108.Google Scholar
  97. 57.
    M. Danos and R. K. Smith, unpublished; see also, A. AusdenGoogle Scholar
  98. 57a.
    J. N. Ginochio, F. H. Harlow, J. R. Nix, M. Danos, E. E. Halbert, and R. K. Smith, Phys. Rev. Lett. 38 (1977) 1055.CrossRefGoogle Scholar
  99. 58.
    A. W. Thomas, J. Phys. G7 L283 (1981).Google Scholar
  100. 59.
    A. Schnabel and J. Rafelski, in preparation.Google Scholar
  101. 60.
    B. Banerjee, N. K. Glendening and T, Matsui “Fission of a Chromoelectric Flux Tube and Meson Radiation from a Quark-Gluon Plasma,” Prepriunt LBL 15349.Google Scholar
  102. 61.
    F. Karsch and H. Satz, Phys. Rev. 21D (1980) 1168.Google Scholar
  103. 62.
    R. Hagedorn, “On a Possible Phase Transition Between Hadron Matter and Quark-Gluon Matter” CERN Preprint TH-3207.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. Rafelski
    • 1
  • M. Danos
    • 2
  1. 1.Institute for Theoretical Physics and AstrophysicsUniversity of Cape TownCape TownUSA
  2. 2.National Bureau of StandardsWashingtonUSA

Personalised recommendations