Logic of Programs 1985: Logics of Programs pp 373-386 | Cite as

Semantical analysis of specification logic

  • R. D. Tennent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 193)


A new interpretation of the specification logic of J.C. Reynolds as an intuitionistic theory is presented. The main features are a functorial treatment of storage structure due to Reynolds and Oles, and the use of a topos-theoretic construction to interpret specification formulas.


Atomic Formula Intuitionistic Logic Axiom Scheme Type Assignment Specification Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    C.A.R. Hoare, “An axiomatic basis for computer programming”, Comm. ACM 12 (10), pp. 576–580 and 583 (October 1969).Google Scholar
  2. (2).
    C.A.R. Hoare and P.E. Lauer, “Consistent and complementary formal theories of the semantics of programming languages”, Acta Informatica 3 (2), pp. 135–153 (1974).Google Scholar
  3. (3).
    J.C. Reynolds, The Craft of Programming, Prentice-Hall International (1981).Google Scholar
  4. (4).
    J.C. Reynolds, “Idealized Algol and its specification logic”, in Tools and Notions for Program Construction (D. Néel, ed.), pp. 121–161, Cambridge University Press (1982); also: Report 1–81, School of Computer and Information Science, Syracuse University (July 1981).Google Scholar
  5. (5).
    J.C. Reynolds, “The essence of Algol”, in Algorithmic Languages (J.W. de Bakker and J.C. van Vliet, eds.), pp. 345–372, North-Holland (1981).Google Scholar
  6. (6).
    F.J. Oles, “Type algebras, functor categories and block structure”; in Algebraic Methods in Semantics (M. Nivat and J.C. Reynolds, eds.), Proceedings of the Symposium on the Applications of Algebra to Language Definition and Compilation, June 1982, Fontainebleau, Cambridge University Press (1985).Google Scholar
  7. (7).
    F.J. Oles, A Category-Theoretic Approach to the Semantics of Programming Languages, Ph.D. dissertation, Syracuse University (August 1982).Google Scholar
  8. (8).
    S.A. Kripke, “Semantical analysis of intuitionistic logic I”, in Formal Systems and Recursive Functions (J.N. Crossley and M.A.E. Dummett, eds.), pp. 92–130, North-Holland (1965).Google Scholar
  9. (9).
    M. Dummett, Elements of Intuitionism, Oxford University Press (1977).Google Scholar
  10. (10).
    D. van Dalen, Logic and Structure, 2nd edition, Springer-Verlag (1983).Google Scholar
  11. (11).
    C. McCarty, “Information systems, continuity and realizability”; in Logics of Programs, Proceedings 1983 (E. Clarke and D. Kozen, eds.). Lecture Notes in Computer Science, vol. 164, pp. 341–359, Springer-Verlag (1984). Also, Chapter 7 of Realizability and Recursive Mathematics, D.Phil. thesis, Oxford University, and technical report CMU-CS-84-131, Dept. of Computer Science, Carnegie-Mellon University (1984).Google Scholar
  12. (12).
    J.C. Reynolds, “Semantics of the domain of flow diagrams”, J. ACM 24 (3), pp. 484–503 (July 1977).Google Scholar
  13. (13).
    D.S. Scott, “Domains for denotational semantics”; in Automata, Languages and Programming (M. Nielsen and E.M. Schmidt, eds.), Proceedings of the Ninth Colloquium, Aarhus, Denmark, July 1982, Lecture Notes in Computer Science, vol. 140, pp. 575–613, Springer-Verlag (1982).Google Scholar
  14. (14).
    R. Goldblatt, Topoi, The Categorial Analysis of Logic, North-Holland (1979).Google Scholar
  15. (15).
    P.J. Landin, “A λ-calculus approach”, in Advances in Programming and Nonnumerical Computation (L. Fox, ed.), pp. 97–141, Pergamon Press (1966).Google Scholar
  16. (16).
    J. Lambek, “From λ-calculus to Cartesian-closed categories”; in To H.B. Curry, Essays in Combinatory Logic, Lambda Calculus and Formalism (J.P. Seldin and J.R. Hindley, eds.), pp. 375–402, Academic Press (1980).Google Scholar
  17. (17).
    D.S. Scott, “Relating theories of the λ-calculus”; in To H.B. Curry, Essays in Combinatory Logic, Lambda Calculus and Formalism (J.P. Seldin and J.R. Hindley, eds.), pp. 403–450, Academic Press (1980).Google Scholar
  18. (18).
    G. Berry, Some Syntactical and Categorical Constructions of Lambda-Calculus Models, Report no. 80, INRIA, Rocquencourt, France (1981).Google Scholar
  19. (19).
    D.S. Scott, “Identity and existence in intuitionistic logic”; in Applications of Sheaf Theory to Algebra, Analysis and Topology (M.P. Fourman, C.J. Mulvey and D.S. Scott, eds.), Lecture Notes in Mathematics, vol. 753, pp. 660–696, Springer-Verlag (1979).Google Scholar
  20. (20).
    D. Prawitz, Natural Deduction, A Proof-Theoretical Study, Almquist and Wiksell, Stockholm (1965).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. D. Tennent
    • 1
  1. 1.Department of Computing and Information ScienceQueen's UniversityKingstonCanada

Personalised recommendations