Advertisement

Logic of Programs 1985: Logics of Programs pp 302-319 | Cite as

The reasoning powers of Burstall's (modal logic) and Pnueli's (temporal logic) program verification methods

An application of model theory
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 193)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andréka,H. Balogh,K. Lábadi,K. Németi,I. Tóth,P.: Plans to improve our program verifyer program. (In Hungarian). Working paper, NIM IGÜSZI, Dept. of Software Techniques, Budapest, 1974.Google Scholar
  2. 2.
    Andréka,H. Németi,I. Sain,I.: A complete first order logic. Preprint Math.Inst.Hung.Acad.Sci. 124 p.Google Scholar
  3. 3.
    Andréka, H. Németi, I. Sain, I.: A complete logic for reasoning about programs via nonstandard model theory, Parts I–II. Theoretical Computer Science 17 (1982), No.2 193–212, No.3 259–278.Google Scholar
  4. 4.
    Bowen,K.A.: Model theory for modal logic (Kripke models for modal predicate calculi). Synthese Library Vol 127, Reidel Publ. Co., 1979.Google Scholar
  5. 5.
    Burstall,R.M.: Program Proving as Hand Simulation with a Little Induction. IFIP Congress, Stockholm, August 3–10, 1974.Google Scholar
  6. 6.
    Csirmaz, L.: On the completeness of proving partial correctness. Acta Cybernetica, Tom 5, Fasc 2, Szeged, 1981, 181–190.Google Scholar
  7. 7.
    Csirmaz, L.: Programs and program verification in a general setting. Theoretical Computer Science 16 (1981) 199–210.Google Scholar
  8. 8.
    Csirmaz,L.: On the Strength of "Sometime" and "Always" in Program Verification. Information and Control, vol 57, Nos 2–3, 1983.Google Scholar
  9. 9.
    Gergely, T. Szőts, M.: On the incompleteness of proving partial correctness. Acta Cybernetica, Tom 4, Fasc 1, Szeged, 1978, 45–57.Google Scholar
  10. 10.
    Gergely,T. Ury,L.: Time models for programming logics. In: Mathematical Logic in Computer Science (Proc.conf. Salgótarján 1978) Eds.: B.Dömölki, T.Gergely, Colloq.Math.Soc.J.Bolyai vol 26, North-Holland, 1981, 359–427.Google Scholar
  11. 13.
    Manna,Z. Pnueli,A.: The Modal Logic of Programs. Preprint CS81-12, June 1981.Google Scholar
  12. 14.
    Mirkowska,G.: Multimodal logics. Preprint, Institute of Math., Warsaw University.Google Scholar
  13. 15.
    Németi, I.: Nonstandard Dynamic Logic. In: Logics of Programs, Ed.: D. Kozen (Proc.Conf. New York 1981) Lecture Notes in Computer Science 131, Springer-Verlag, Berlin, 1982, 311–348.Google Scholar
  14. 16.
    Pnueli,A.: The Temporal Logic of Programs. Preprint Weitzmann Institute of Science, Dept. of Applied Math., May 1981.Google Scholar
  15. 17.
    Richter, M.M. Szabo, M.E.: Nonstandard Computation Theory. Preprint, Concordia University, Montreal, 1983.Google Scholar
  16. 18.
    Sain,I.: Successor axioms for time increase the program verifying power of full computational induction. Preprint No 23/1983, Math.Inst.Hung.Acad.Sci., Budapest, 1983.Google Scholar
  17. 19.
    Sain,I.: Model theoretic characterization of Pnueli's temporal program verification method. Manuscript, 1983.Google Scholar
  18. 21.
    Sain,I.: How to define the meaning of iteration ? and Sharpening the characterization of Pnueli's program verification method (Structured NDL Parts II–III). Preprint No 48/1984, Math.Inst.Hung.Acad.Sci., Budapest, 1984.Google Scholar
  19. 22.
    Sain,I.: Total correctness in nonstandard dynamic logic. Preprint No 8/1983, Math.Inst.Hung.Acad.Sci., Budapest, 1983.Google Scholar
  20. 23.
    Szabo,M.E.: Personal communication, 1981.Google Scholar
  21. 24.
    Pasztor,A.: Nonstandard Dynamic Logic to Prove Standard Properties of Programs. Carnegie-Mellon Univ., Dept. of Math., Research Report 84-3.Google Scholar
  22. 25.
    Pasztor,A.: Nonstandard Logics of Programs. Carnegie-Mellon Univ. Dept. of Math., Research Report, Dec. 1984.Google Scholar
  23. 26.
    Sain,I.: A simple proof for the completeness of Floyd's method. Theoretical Computer Science vol 35, 1985, to appear.Google Scholar
  24. 27.
    Sain,I.: The implicit information content of Burstall's (modal) program verification method. Preprint No 57/1984, Math.Inst.Hung.Acad.Sci., Budapest, 1984.Google Scholar
  25. 28.
    Biró,B. Sain,I.: Peano Arithmetic for the Time Scale of Nonstandard Logics of Programs. Preprint, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • I. Sain
    • 1
  1. 1.Math. Inst. of the Hungar. Acad. of Sci.BudapestHungary

Personalised recommendations