Logic of Programs 1985: Logics of Programs pp 167-189 | Cite as

Compositional semantics for real-time distributed computing

  • R. Koymans
  • R. K. Shyamasundar
  • W. P. de Roever
  • R. Gerth
  • S. Arun-Kumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 193)


We give a compositional denotational semantics for a real-time distributed language, based on the linear history semantics for CSP of Francez et al. Concurrent execution is not modelled by interleaving but by an extension of the maximal parallelism model of Salwicki, that allows the modelling of transmission time for communications. The importance of constructing a semantics (and in general a proof theory) for real-time is stressed by such different sources as the problem of formalizing the real-time aspects of Ada and the elimination of errors in real-time flight control software ([Sunday Times 7-22-84]).


Parallel Composition Denotational Semantic Semantic Match Compositional Semantic Input Command 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ada 83]
    The programming language Ada. Reference manual. LNCS 155, Springer, 1983.Google Scholar
  2. [BC 84]
    G. Berry, L. Cosserat. The ESTEREL Synchronous Programming Language and its Mathematical Semantics. R de R No 327, INRIA, Centre Sophia Antipolis, 1984.Google Scholar
  3. [BH 81]
    A. Bernstein, P.K. Harter jr. Proving Real-time Properties of Programs with Termporal Logic. 8th ACM SOSP, pp. 1–11, 1981.Google Scholar
  4. [BHR 84]
    S.D. Brookes, C.A.R. Hoare, A.W. Roscoe. A theory of Communicating Sequential Processes. JACM 31-3, pp. 560–599, July 1984.Google Scholar
  5. [BKP 84]
    H. Barringer, R. Kuiper, A. Pnueli. Now You May Compose Temporal Logic Specifications. 16th ACM STOC, pp. 51–63, 1984.Google Scholar
  6. [BLW 82]
    P.Branquart, G. Louis, P. Wodon. An Analytical Description of CHILL, the CCITT High Level Language VI, LNCS 128, Springer, 1982.Google Scholar
  7. [BO 80]
    D. Bjørner, O.N. Oest (eds). Towards a Formal Description of Ada. LNCS 98, Springer, 1980.Google Scholar
  8. [CACM 84]
    A Case Study: The Space Shuttle Software System. CACM 27-9, 1984.Google Scholar
  9. [Cam 82]
    J. Camerini. Semantique Mathematique de Primitives Temps Reel. These de 3 eme cycle, IMA, Université de Nice, 1982.Google Scholar
  10. [Dij 59]
    E.W. Dijkstra. Communication with an automatic computer. Ph.D. thesis, Mathematical Centre, Amsterdam, 1959.Google Scholar
  11. [FLP 84]
    N. Francez, D. Lehmann, A. Pnueli. A linear-history semantics for languages for distributed programming. TCS 32, pp. 25–46, 1984.Google Scholar
  12. [Ger 85]
    R. Gerth. A Maximal Parallelism Semantics for Occam. Notes, 1985.Google Scholar
  13. [HH 83]
    E.C.R. Hehner, C.A.R. Hoare. A more complete model of communicating processes. TCS 26, pp. 105–120, 1983.Google Scholar
  14. [HMM85]
    J. Y. Halpern, N. Megiddo, A. A. Munshi. Optimal Precision in the Presence of Uncertainty. IBM Research Lab., San Jose, 1985.Google Scholar
  15. [Hoa 78]
    C.A.R. Hoare. Communicating Sequential Processes. CACM 21–8, 1978.Google Scholar
  16. [Jon 82]
    G. Jones. D. Phil.thesis, Oxford, unpublished, 1982.Google Scholar
  17. [Koy 84]
    R. Koymans. Denotational semantics for real-time programming constructs in concurrent languages. Notes, 1984.Google Scholar
  18. [KSRGA85]
    R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, S. Arun-Kumar. Compositional Semantics for Real-time Distributed Computing. KUN Report, Informatics Department, Nijmegen University, 1985.Google Scholar
  19. [KVR 83]
    R. Koymans, J. Vytopil, W.P. de Roever. Real-time Programming and Asynchronous Message Passing. 2nd ACM PODC, pp. 187–197, 1983.Google Scholar
  20. [Mil 73]
    R. Milner. An approach to the semantics of parallel programs. Proc. of the Convegno di Informatica Teorica, Pisa, 1973.Google Scholar
  21. [Mil 83]
    R. Milner. Calculi for Synchrony and Asynchrony. TCS 25, pp. 267–310, 1983.Google Scholar
  22. [Occ 84]
    The Occam language reference manual. Prentice Hall, 1984.Google Scholar
  23. [Shy 84]
    R.K. Shyamasundar. A total correctness proof system for a real-time distributed language. Notes, 1984.Google Scholar
  24. [SM 81]
    A. Salwicki, T. Müldner. On the algorithmic properties of concurrent programs. LNCS 125, Springer, 1981.Google Scholar
  25. [Sou 83]
    N. Soundararajan. Correctness Proofs for CSP Programs. TCS 23–4, 1983.Google Scholar
  26. [Sou 84]
    N. Soundararajan. Axiomatic Semantics of Communicating Sequential Processes. TOPLAS 6-4, pp. 647–662, 1984.Google Scholar
  27. [SR 83]
    R.K. Shyamasundar, W. P. de Roever. Semantics of real-time Ada. Notes, 1983.Google Scholar
  28. [ST 84]
    Sunday Times July 22, 1984.Google Scholar
  29. [Zij 84]
    E. Zijlstra. Real-time semantics. submitted, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • R. Koymans
    • 1
  • R. K. Shyamasundar
    • 3
  • W. P. de Roever
    • 1
    • 2
  • R. Gerth
    • 2
  • S. Arun-Kumar
    • 3
  1. 1.Department of Computer ScienceUniversity of Nijmegen, ToernooiveldNijmegenthe Netherlands
  2. 2.Department of Computer ScienceUniversity of UtrechtTA Utrechtthe Netherlands
  3. 3.NCSDCT, Tata Institute for Fundamental ResearchBombayIndia

Personalised recommendations