Eddy viscosity subgrid scale models for homogeneous turbulence

  • B. Aupoix
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 230)


New subgrid scale models have been developed. The first one is based upon coupling the LES to an EDQNM routine and leads to a wave number dependent eddy viscosity. For the sake of simplicity, this model can be approximated by a wave number independent eddy viscosity. This constant eddy viscosity is expressed in terms of the small eddies, so that both the large scales and the small scales are known during the simulation for better comparison with experiments. Furthermore, this model has been extended to low Reynolds number turbulence by assuming various energy spectrum shapes, to rotating turbulence and to anisotropic filtering. By comparison with experiments or other simulations, these models have demonstrated their validity for moderate anisotropy.


Large Eddy Simulation Eddy Viscosity Effective Viscosity Isotropic Turbulence Direct Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANDRE J.C., LESIEUR M. (1977) — “Influence of helicity on the evolution of isotropic turbulence at high Reynolds number” — JFM Vol. 81, pp. 187–207Google Scholar
  2. AUPOIX B., COUSTEIX J. (1982) — “Subgrid scale model for isotropic turbulence” — Proceedings of the Symposium of Refined modelling of flows, PARIS, Sept. 7–10 1982Google Scholar
  3. AUPOIX B., COUSTEIX J. (1982) — “Simple subgrid scale stresses models for homogeneous isotropic turbulence” — La Recherche Aérospatiale 1982-4Google Scholar
  4. BARDINA J., FERZIGER J.H., ROGALLO R.S. (1982) — “Effects of rotation on isotropic turbulence: computation. and modelling” — STANFORD UniversityGoogle Scholar
  5. BARDINA J., FERZIGER J.H., REYNOLDS W.C. (1983) — “Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows” — Report n° TF-19 — STANFORD UniversityGoogle Scholar
  6. BERTOGLIO J.P. (1981) — “A model of three-dimensional transfer in non isotropic homogeneous turbulence” — Turbulent Shear Flow 3, DAVISGoogle Scholar
  7. BERTOGLIO J.P., MATHIEU J. (1983) — “Study of subgrid models for sheared turbulence” — Turbulent Shear Flow 4, KARLSRUHEGoogle Scholar
  8. BERTOGLIO J.P. (1984) — “Subgrid modelling for sheared turbulence” — Macroscopic Modelling of Turbulent Flows and Fluid Mixtures, NICE, Déc. 10–14, 1984Google Scholar
  9. CAMBON C., JEANDEL D., MATHIEU J. (1981) — “Spectral modelling of homogeneous non isotropic turbulence” — JFM Vol. 104, pp. 247–262Google Scholar
  10. CAMBON C., BERTOGLIO J.P., JEANDEL D. (1981) — “Comparison of computation with experiments” — The 1980–81 AFOSR-HTTM STANFORD Conference on Complex Turbulent Flows, Vol. III, pp. 1307–1311Google Scholar
  11. CHOLLET J.P., LESIEUR M. (1981) — “Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures” — JAS, Vol. 38, N° 12, pp. 2747–2757Google Scholar
  12. CHOLLET J.P. (1983) — “Two-point closures as a subgrid scale modelling for large eddy simulations” — Turbulent Shear Flow 4, KARLSRUHEGoogle Scholar
  13. COMTE-BELLOT G., CORRSIN S. (1971) — “Simple Eulerian time correlations for full-and narrow-band velocity signals in grid-generated, “isotropic” turbulence” — JFM, Vol. 48-2, pp. 273–337Google Scholar
  14. DANG K. (1983) — “Evaluation of simple subgrid scale models for the numerical simulation of homogeneous isotropic and anisotropic turbulence” — AIAA 16th Fluid and Plasma Dynamics Conference, DANVERS (MASSACHUSSETTS), July 12–14, 1983Google Scholar
  15. GENCE J.N., MATHIEU J. (1979) — “On the application of successive plane strains to grid-generated turbulence” — JFM, Vol. 93-3, pp. 501–513Google Scholar
  16. KRAICHNAN R.H. (1976) — “Eddy viscosity in two and three dimensions” — JAS, Vol. 33, pp. 1521–1536Google Scholar
  17. LEONARD A. (1973) — “Energy cascade in large eddy simulations of turbulent fluid flow” — Advances in Geophysics, Vol. 18 A, pp. 237–248Google Scholar
  18. LESIEUR M., CHOLLET J.P. (1979) — “Introduction aux théories statistiques de la turbulence pleinement développée” in Bifurcation et problèmes non linéaires, C.BARDOS, C. SCHATZMANN, J.M. LASRY, Springer VerlagGoogle Scholar
  19. LESLIE D.C., QUARINI G.L. (1979) — “The application of turbulence theory to the formulation of subgrid modelling procedures” — JFM, Vol. 91-1, pp. 65–91Google Scholar
  20. LILLY D.K. (1966) — “On the application of the eddy viscosity concept in the inertial subrange of turbulence” — NCAR Manuscript N° 123Google Scholar
  21. ORSZAG S. (1970) — “Analytical theories of turbulence” — JFM, Vol. 41-2, pp. 363–386Google Scholar
  22. ROGALLO R.S. (1981) — “Numerical experiments in homogeneous turbulence” — NASA TM 81315Google Scholar
  23. SMAGORINSKY J. (1963) — “General circulation experiment with the primitive equations” — Monthly Weather Review, Vol. 91, N° 3, pp. 99–164Google Scholar
  24. VIGNON J.M., CAMBON C., LESIEUR M., JEANDEL D. (1979) — “Confrontation aux expériences de turbulence thermique homogène et isotrope de calculs basés sur la théorie EDQNM” — CRAS PARIS t 288 Série B 335Google Scholar
  25. AUPOIX B., COUSTEIX J., LIANDRAT J. (1983)-“Effect of rotation on isotropic turbulence” — Turbulent Shear Flow 4, KARLSRUHEGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • B. Aupoix
    • 1
  1. 1.ONERA/CERTToulouse CedexFrance

Personalised recommendations