Large and small structures in the computation of transition to fully developed turbulent flows

  • P. Perrier
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 230)


We shall discuss how the large structures of turbulent flows have to be modellized especially from the beginning of their onset, without any hypothesis based on fully developed turbulence. A completely mathematical derived model is presented, given by homogenization theory. That model would be able to evaluate the size and behaviour of large structures in presence of statistical equilibrium of small structures.


Large Structure Turbulent Wake Turbulent Flow Field Karman Vortex Street Upstream Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Mc WILLIAMS J.C. The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. (1984) vol. 146 pp. 21–43.Google Scholar
  2. (2).
    A. BENSOUSSAN, J.L. LIONS and G. PAPANICOLAOU, Asymptotic Methods for Periodic Structures, North-Holland, Amsterdam (1978).Google Scholar
  3. (3).
    J.S. SMAGORINSKY, Mon. Weather Rev. 91, 99–164. U. FRISCH, Z.S. SHE, O. THUAL, On the elastic behaviour of turbulence.Google Scholar
  4. (4).
    P. PERRIER, O. PIRONNEAU, Couplage des grosses et petites structures turbulentes par l'homogénéisation, CRAS. 13 Février 1978.Google Scholar
  5. (5).
    P. PERRIER, O. PIRONNEAU, Subgrid turbulence modelling by homogenization, Math. Modelling Vol. 2, 295–317 (1981).Google Scholar
  6. (6).
    O. PIRONNEAU, Homogenization transport processes and turbulence modelling. Proc. INRIA-Novossibirsk, Dec. 1978 (to appear).Google Scholar
  7. (7).
    G. PAPANICOLAOU, O. PIRONNEAU, On the asymptotic behavior of motion in random flow in “Stochastic non linear systems” Arnold-Lefever eds. Springer (1981).Google Scholar
  8. (8).
    D. Mc. LAUGHIN, G. PAPANICOLAOU, O. PIRONNEAU, Non linear evolution equations with rapidly oscillating initial data. Lecture Note in Physics 154 Springer (1981).Google Scholar
  9. (9).
    D. Mc. LAUGHIN, G. PAPANICOLAOU, O. PIRONNEAU, Convection of micro-structures. Proc. INRIA Conf. Dec. 1981, North-Holland (Glowinski ed.)Google Scholar
  10. (10).
    C. BEGUE, “Simulation Numérique de la turbulence pour méthode d'homogénéisation”. Thèse de 3ème cycle — 1983 — Paris VI.Google Scholar
  11. (11).
    T. CHACON, Contribution al estudio del modelo m.p.p. de turbulencia — These doctoral — Université de Séville — Septembre 1984.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • P. Perrier
    • 1
  1. 1.AMD/BASt CloudFrance

Personalised recommendations